BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37923948)

  • 1. Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson's Disease.
    Ando D; Ozawa A; Sakaue M; Yamamoto E; Miyazaki T; Sato Y; Koide T; Izutsu KI
    Pharm Res; 2024 Jan; 41(1):153-163. PubMed ID: 37923948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolving Polymer Microneedles for Transdermal Delivery of Insulin.
    Zhang N; Zhou X; Liu L; Zhao L; Xie H; Yang Z
    Front Pharmacol; 2021; 12():719905. PubMed ID: 34630098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of transdermal delivery of sumatriptan succinate using a novel self-dissolving microneedle array fabricated from sodium hyaluronate in rats.
    Wu D; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Biol Pharm Bull; 2015; 38(3):365-73. PubMed ID: 25757917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transdermal Delivery of Pramipexole Using Microneedle Technology for the Potential Treatment of Parkinson's Disease.
    McGuckin MB; Hutton ARJ; Davis ER; Sabri AHB; Ripolin A; Himawan A; Naser YA; Ghanma R; Greer B; McCarthy HO; Paredes AJ; Larrañeta E; Donnelly RF
    Mol Pharm; 2024 May; 21(5):2512-2533. PubMed ID: 38602861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Dissolving Microneedle Arrays for Transdermal Absorption Enhancement of Human Parathyroid Hormone (1-34).
    Naito C; Katsumi H; Suzuki T; Quan YS; Kamiyama F; Sakane T; Yamamoto A
    Pharmaceutics; 2018 Nov; 10(4):. PubMed ID: 30400376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel nanostructured lipid carriers-loaded dissolving microneedles for controlled local administration of aconitine.
    Guo T; Cheng N; Zhao J; Hou X; Zhang Y; Feng N
    Int J Pharm; 2019 Dec; 572():118741. PubMed ID: 31705974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Tip-Dissolving Microneedles for Transdermal Drug Delivery of Meloxicam.
    Chen J; Huang W; Huang Z; Liu S; Ye Y; Li Q; Huang M
    AAPS PharmSciTech; 2018 Apr; 19(3):1141-1151. PubMed ID: 29218581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rizatriptan benzoate-loaded dissolving microneedle patch for management of acute migraine therapy.
    Zhong C; Zhang X; Sun Y; Shen Z; Mao Y; Liu T; Wang R; Nie L; Shavandi A; Yunusov KE; Jiang G
    J Biomater Appl; 2024 Apr; 38(9):989-999. PubMed ID: 38427917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal delivery of celecoxib and α-linolenic acid from microemulsion-incorporated dissolving microneedles for enhanced osteoarthritis therapy.
    Li J; Tian X; Wang K; Jia Y; Ma F
    J Drug Target; 2023 Feb; 31(2):206-216. PubMed ID: 36093744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery.
    Chen BZ; Ashfaq M; Zhang XP; Zhang JN; Guo XD
    J Drug Target; 2018 Sep; 26(8):720-729. PubMed ID: 29301433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolving microneedle-based intradermal delivery of interferon-α-2b.
    Chen J; Qiu Y; Zhang S; Gao Y
    Drug Dev Ind Pharm; 2016; 42(6):890-6. PubMed ID: 26467418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles.
    Aung NN; Ngawhirunpat T; Rojanarata T; Patrojanasophon P; Pamornpathomkul B; Opanasopit P
    Int J Pharm; 2020 Aug; 586():119508. PubMed ID: 32512227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minoxidil Nanosuspension-Loaded Dissolved Microneedles for Hair Regrowth.
    Hamed R; Alhadidi HFI
    AAPS PharmSciTech; 2024 Apr; 25(4):75. PubMed ID: 38580793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
    Mizuno Y; Takasawa K; Hanada T; Nakamura K; Yamada K; Tsubaki H; Hara M; Tashiro Y; Matsuo M; Ito T; Hikima T
    Biomed Microdevices; 2021 Jul; 23(3):38. PubMed ID: 34287717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery.
    Nasiri MI; Vora LK; Ershaid JA; Peng K; Tekko IA; Donnelly RF
    Drug Deliv Transl Res; 2022 Apr; 12(4):881-896. PubMed ID: 34939170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery.
    Migalska K; Morrow DI; Garland MJ; Thakur R; Woolfson AD; Donnelly RF
    Pharm Res; 2011 Aug; 28(8):1919-30. PubMed ID: 21437789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of hyaluronic acid-silica composites via in situ precipitation for improved penetration efficiency in fast-dissolving microneedle systems.
    Tay JH; Lim YH; Zheng M; Zhao Y; Tan WS; Xu C; Ramamurty U; Song J
    Acta Biomater; 2023 Dec; 172():175-187. PubMed ID: 37865280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.