BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37924596)

  • 1. Migration characteristics of chlorine during pyrolysis of municipal solid waste pellets.
    Gao P; Hu Z; Sheng Y; Pan W; Tang L; Chen Y; Chen X; Wang F
    Waste Manag; 2023 Dec; 172():208-215. PubMed ID: 37924596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSW pyrolysis volatiles' reforming by incineration fly ash for both pyrolysis products upgrading and fly ash stabilization.
    Tang Y; Chen D; Feng Y; Hu Y; Yin L; Qian K; Yuan G; Zhang R
    Chemosphere; 2023 Feb; 313():137536. PubMed ID: 36528161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of municipal plastic waste: Chlorine distribution and formation of organic chlorinated compounds.
    Gao P; Hu Z; Sheng Y; Pan W; Ding L; Tang L; Chen X; Wang F
    Sci Total Environ; 2024 Feb; 912():169572. PubMed ID: 38142986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of various additives on the pyrolysis characteristics of municipal solid waste.
    Song Q; Zhao HY; Xing WL; Song LH; Yang L; Yang D; Shu X
    Waste Manag; 2018 Aug; 78():621-629. PubMed ID: 32559953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution.
    Agar DA; Kwapinska M; Leahy JJ
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35874-35882. PubMed ID: 29484618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char.
    Wang N; Qian K; Chen D; Zhao H; Yin L
    Waste Manag; 2020 Feb; 102():380-390. PubMed ID: 31733562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor.
    Luo S; Xiao B; Hu Z; Liu S; Guan Y; Cai L
    Bioresour Technol; 2010 Aug; 101(16):6517-20. PubMed ID: 20363619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and speciation transformation of chlorine during automobile shredder residue pyrolysis.
    Ren Y; Hu H; Cao C; Guo G; Zeng X; Zou C; Li X; Yao H
    Waste Manag; 2024 Feb; 174():320-327. PubMed ID: 38091656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjusting effects of pyrolytic volatiles interaction in char to upgrade oil by swelling waste nylon-tire.
    Huang R; Ren Q; Zhang J; He L; Su S; Wang Y; Jiang L; Xu J; Hu S; Xiang J
    Waste Manag; 2023 Sep; 169():374-381. PubMed ID: 37527617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow pyrolysis of municipal solid waste (MSW): A review.
    Lu JS; Chang Y; Poon CS; Lee DJ
    Bioresour Technol; 2020 Sep; 312():123615. PubMed ID: 32517890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis technologies for municipal solid waste: a review.
    Chen D; Yin L; Wang H; He P
    Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal solid wastes pyro-gasification using high-temperature flue gas as heating resource and gasifying agent.
    Ge S; Chen D; Yin L; Hong L; Zhou H; Huang Z
    Waste Manag; 2022 Jul; 149():114-123. PubMed ID: 35728475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors.
    Sun Y; Tao J; Chen G; Yan B; Cheng Z
    Waste Manag; 2020 Apr; 107():276-284. PubMed ID: 32320940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of MSW pyrolysis products based on a deep artificial neural network.
    Zang Y; Ge S; Lin Y; Yin L; Chen D
    Waste Manag; 2024 Mar; 176():159-168. PubMed ID: 38281347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of metals and emissions of organic pollutants from torrefaction of waste wood, MSW, and RDF.
    Edo M; Skoglund N; Gao Q; Persson PE; Jansson S
    Waste Manag; 2017 Oct; 68():646-652. PubMed ID: 28633911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.
    Miskolczi N; Ateş F; Borsodi N
    Bioresour Technol; 2013 Sep; 144():370-9. PubMed ID: 23891947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of organic compounds in biochars derived from municipal solid waste.
    Taherymoosavi S; Verheyen V; Munroe P; Joseph S; Reynolds A
    Waste Manag; 2017 Sep; 67():131-142. PubMed ID: 28601581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.
    Ateş F; Miskolczi N; Borsodi N
    Bioresour Technol; 2013 Apr; 133():443-54. PubMed ID: 23455219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorine migration mechanisms during torrefaction of fermentation residue from food waste.
    Wang Y; Hu S; Li W; Gu J; Yuan H; Ling X; Chen Y
    Bioresour Technol; 2019 Jan; 271():9-15. PubMed ID: 30253274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.