These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37924688)

  • 1. Improving microbial bioproduction under low-oxygen conditions.
    Kulakowski S; Banerjee D; Scown CD; Mukhopadhyay A
    Curr Opin Biotechnol; 2023 Dec; 84():103016. PubMed ID: 37924688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial production of bulk chemicals: development of anaerobic processes.
    Weusthuis RA; Lamot I; van der Oost J; Sanders JP
    Trends Biotechnol; 2011 Apr; 29(4):153-8. PubMed ID: 21227520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics-based design of microbial cell factories for anaerobic product formation.
    Cueto-Rojas HF; van Maris AJ; Wahl SA; Heijnen JJ
    Trends Biotechnol; 2015 Sep; 33(9):534-46. PubMed ID: 26232033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica.
    Ledesma-Amaro R; Nicaud JM
    Trends Biotechnol; 2016 Oct; 34(10):798-809. PubMed ID: 27207225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
    Carlström CI; Loutey D; Bauer S; Clark IC; Rohde RA; Iavarone AT; Lucas L; Coates JD
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Promise of Optogenetics for Bioproduction: Dynamic Control Strategies and Scale-Up Instruments.
    Pouzet S; Banderas A; Le Bec M; Lautier T; Truan G; Hersen P
    Bioengineering (Basel); 2020 Nov; 7(4):. PubMed ID: 33255280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological characteristics of Corynebacterium glutamicum as a cell factory under anaerobic conditions.
    Tsuge Y; Yamaguchi A
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6173-6181. PubMed ID: 34402937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions.
    Kampers LFC; van Heck RGA; Donati S; Saccenti E; Volkers RJM; Schaap PJ; Suarez-Diez M; Nikel PI; Martins Dos Santos VAP
    Microb Cell Fact; 2019 Oct; 18(1):179. PubMed ID: 31640713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process engineering for microbial production of 3-hydroxypropionic acid.
    de Fouchécour F; Sánchez-Castañeda AK; Saulou-Bérion C; Spinnler HÉ
    Biotechnol Adv; 2018; 36(4):1207-1222. PubMed ID: 29608950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen.
    Shi XC; Tremblay PL; Wan L; Zhang T
    Sci Total Environ; 2021 Feb; 754():142440. PubMed ID: 33254866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the development and application of microbial consortia for metabolic engineering.
    Jawed K; Yazdani SS; Koffas MA
    Metab Eng Commun; 2019 Dec; 9():e00095. PubMed ID: 31720211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics-based development of bioproduction processes toward industrial-scale production.
    Tanaka K; Bamba T; Kondo A; Hasunuma T
    Curr Opin Biotechnol; 2024 Feb; 85():103057. PubMed ID: 38154323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs.
    Bennett RK; Steinberg LM; Chen W; Papoutsakis ET
    Curr Opin Biotechnol; 2018 Apr; 50():81-93. PubMed ID: 29216497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying target processes for microbial electrosynthesis by elementary mode analysis.
    Kracke F; Krömer JO
    BMC Bioinformatics; 2014 Dec; 15(1):410. PubMed ID: 25547630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New bioproduction systems for chemicals and fuels: Needs and new development.
    Zeng AP
    Biotechnol Adv; 2019; 37(4):508-518. PubMed ID: 30639927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.