BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37924703)

  • 1. Enhanced chalcopyrite-catalyzed heterogeneous Fenton oxidation of diclofenac by ABTS.
    Li Y; Xiao J; Dong H; Li L; Dong J; Huang D
    J Hazard Mater; 2024 Feb; 463():132908. PubMed ID: 37924703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ABTS as an electron shuttle to accelerate the degradation of diclofenac with horseradish peroxidase-catalyzed hydrogen peroxide oxidation.
    Huang Y; Lin J; Zou J; Xu J; Wang M; Cai H; Yuan B; Ma J
    Sci Total Environ; 2021 Dec; 798():149276. PubMed ID: 34333427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite.
    Li Y; Dong H; Li L; Xiao J; Xiao S; Jin Z
    Water Res; 2021 Sep; 202():117451. PubMed ID: 34330026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABTS as Both Activator and Electron Shuttle to Activate Persulfate for Diclofenac Degradation: Formation and Contributions of ABTS
    Huang Y; Zou J; Lin J; Yang H; Wang M; Li J; Cao W; Yuan B; Ma J
    Environ Sci Technol; 2023 Nov; 57(47):18420-18432. PubMed ID: 36260114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetically induced self-assembly of Ru@Fe
    Qiu B; Zhou X; Li W; Zhu H; Yu L; Yuan C; Dou R; Sun M; Wang S
    Environ Res; 2024 Feb; 242():117781. PubMed ID: 38036212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxylamine driven advanced oxidation processes for water treatment: A review.
    Duan J; Pang SY; Wang Z; Zhou Y; Gao Y; Li J; Guo Q; Jiang J
    Chemosphere; 2021 Jan; 262():128390. PubMed ID: 33182154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of diclofenac sodium using Fenton-like technology based on nano-calcium peroxide.
    Jiang YY; Chen ZW; Li MM; Xiang QH; Wang XX; Miao HF; Ruan WQ
    Sci Total Environ; 2021 Jun; 773():144801. PubMed ID: 33582322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review.
    Lai C; Shi X; Li L; Cheng M; Liu X; Liu S; Li B; Yi H; Qin L; Zhang M; An N
    Sci Total Environ; 2021 Jun; 775():145850. PubMed ID: 33631587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced chlorination of diclofenac using ABTS as electron shuttle: Performance, mechanism and applicability.
    Xu J; Zou J; Wu J; Zeng H; Huang Y; Yang J; Gong C; Chen S; Ma J
    Sci Total Environ; 2024 Jan; 907():168117. PubMed ID: 37890637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton-based processes using chalcopyrite as sustainable catalyst.
    Droguett C; Salazar R; Brillas E; Sirés I; Carlesi C; Marco JF; Thiam A
    Sci Total Environ; 2020 Oct; 740():140154. PubMed ID: 32563883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-assisted reductive cleavage and catalytic hydrolysis-mediated persulfate activation by mixed redox-couple-involved CuFeS
    Huang J; Zhou Y; Deng S; Shangguan Y; Wang R; Ge Q; Feng X; Yang Z; Ji Y; Fan T; Chen B; Li B; Zheng C; Hu X; Chen H
    Water Res; 2022 Aug; 222():118885. PubMed ID: 35932701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoted oxidation of diclofenac with ferrate (Fe(VI)): Role of ABTS as the electron shuttle.
    Dong H; Qiang Z; Lian J; Qu J
    J Hazard Mater; 2017 Aug; 336():65-70. PubMed ID: 28472710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation.
    Zhao B; Gong J; Song B; Sang F; Zhou C; Zhang C; Cao W; Niu Q; Chen Z
    Chemosphere; 2022 Dec; 308(Pt 3):136427. PubMed ID: 36122753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline.
    He Z; Xu X; Wang B; Lu Z; Shi D; Wu W
    J Environ Manage; 2022 Nov; 322():116077. PubMed ID: 36055098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation.
    Lin K; Afzal S; Xu L; Ding T; Li F; Zhang M
    Environ Pollut; 2023 Jun; 327():121454. PubMed ID: 36997142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters.
    Lin J; Zou J; Cai H; Huang Y; Li J; Xiao J; Yuan B; Ma J
    Water Res; 2021 Dec; 207():117796. PubMed ID: 34736001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation.
    Liu X; Yao Y; Lu J; Zhou J; Chen Q
    Chemosphere; 2023 Jan; 311(Pt 1):136972. PubMed ID: 36283427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mineralization of hypersaline wastewater with Fe
    Yang X; Yang Z; Liu Z; Zhang W; Wang D
    Water Sci Technol; 2018 Oct; 78(5-6):1219-1227. PubMed ID: 30339546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of diclofenac by H
    Li X; Zhou M; Pan Y
    Chemosphere; 2018 Dec; 212():853-862. PubMed ID: 30193234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-Fenton process applied for the treatment of industrial wastewaters containing diclofenac: optimization with low iron ions concentrations and without pH control.
    Miele RG; Carvalho JF; Almeida J; Oliveira IHM; Parise BF; Moraes JEF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(6):550-562. PubMed ID: 37042057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.