These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
676 related articles for article (PubMed ID: 37924750)
1. Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism. Islam NU; Zhou Z; Gehlot S; Gotway MB; Liang J Med Image Anal; 2024 Jan; 91():102988. PubMed ID: 37924750 [TBL] [Abstract][Full Text] [Related]
2. Seeking an Optimal Approach for Computer-Aided Pulmonary Embolism Detection. Islam NU; Gehlot S; Zhou Z; Gotway MB; Liang J Mach Learn Med Imaging; 2021 Sep; 12966():692-702. PubMed ID: 35695860 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Tajbakhsh N; Shin JY; Gotway MB; Liang J Med Image Anal; 2019 Dec; 58():101541. PubMed ID: 31416007 [TBL] [Abstract][Full Text] [Related]
4. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976 [TBL] [Abstract][Full Text] [Related]
5. IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning. Khan M; Shah PM; Khan IA; Islam SU; Ahmad Z; Khan F; Lee Y Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772510 [TBL] [Abstract][Full Text] [Related]
6. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. Otálora S; Marini N; Müller H; Atzori M BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886 [TBL] [Abstract][Full Text] [Related]
7. Cross-Attention Based Multi-Resolution Feature Fusion Model for Self-Supervised Cervical OCT Image Classification. Wang Q; Chen K; Dou W; Ma Y IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(4):2541-2554. PubMed ID: 37027657 [TBL] [Abstract][Full Text] [Related]
8. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images. Li GY; Chen J; Jang SI; Gong K; Li Q Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263 [TBL] [Abstract][Full Text] [Related]
9. Unsupervised contrastive learning based transformer for lung nodule detection. Niu C; Wang G Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36113445 [No Abstract] [Full Text] [Related]
10. Semi-supervised vision transformer with adaptive token sampling for breast cancer classification. Wang W; Jiang R; Cui N; Li Q; Yuan F; Xiao Z Front Pharmacol; 2022; 13():929755. PubMed ID: 35935827 [TBL] [Abstract][Full Text] [Related]
11. Visual Transformers and Convolutional Neural Networks for Disease Classification on Radiographs: A Comparison of Performance, Sample Efficiency, and Hidden Stratification. Murphy ZR; Venkatesh K; Sulam J; Yi PH Radiol Artif Intell; 2022 Nov; 4(6):e220012. PubMed ID: 36523640 [TBL] [Abstract][Full Text] [Related]
14. Jointly Optimized Deep Neural Networks to Synthesize Monoenergetic Images from Single-Energy CT Angiography for Improving Classification of Pulmonary Embolism. Fink MA; Seibold C; Kauczor HU; Stiefelhagen R; Kleesiek J Diagnostics (Basel); 2022 May; 12(5):. PubMed ID: 35626379 [TBL] [Abstract][Full Text] [Related]
15. Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining. Pu J; Gezer NS; Ren S; Alpaydin AO; Avci ER; Risbano MG; Rivera-Lebron B; Chan SY; Leader JK Med Image Anal; 2023 Oct; 89():102882. PubMed ID: 37482032 [TBL] [Abstract][Full Text] [Related]
16. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850 [TBL] [Abstract][Full Text] [Related]
17. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Eun H; Kim D; Jung C; Kim C Comput Methods Programs Biomed; 2018 Oct; 165():215-224. PubMed ID: 30337076 [TBL] [Abstract][Full Text] [Related]
18. Self-Supervised Bi-Channel Transformer Networks for Computer-Aided Diagnosis. Gong R; Han X; Wang J; Ying S; Shi J IEEE J Biomed Health Inform; 2022 Jul; 26(7):3435-3446. PubMed ID: 35201993 [TBL] [Abstract][Full Text] [Related]
19. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Alharthi AG; Alzahrani SM Comput Biol Med; 2023 Dec; 167():107667. PubMed ID: 37939407 [TBL] [Abstract][Full Text] [Related]
20. Transformer-based unsupervised contrastive learning for histopathological image classification. Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]