These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37924875)
1. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. Zhang Y; Song M; Zhu Y; Li H; Zhang Y; Wang G; Chen X; Zhang W; Wang H; Wang Y; Shao R; Guo J; Yang Q Sci Total Environ; 2024 Jan; 908():168219. PubMed ID: 37924875 [TBL] [Abstract][Full Text] [Related]
2. Microplastics promoted cadmium accumulation in maize plants by improving active cadmium and amino acid synthesis. Zhao M; Xu L; Wang X; Li C; Zhao Y; Cao B; Zhang C; Zhang J; Wang J; Chen Y; Zou G J Hazard Mater; 2023 Apr; 447():130788. PubMed ID: 36682251 [TBL] [Abstract][Full Text] [Related]
3. Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories. Zhao M; Li Y; Li C; Wang X; Cao B; Zhang J; Wang J; Zou G; Chen Y J Hazard Mater; 2024 Jul; 473():134726. PubMed ID: 38797077 [TBL] [Abstract][Full Text] [Related]
4. Effects of microplastics and cadmium co-contamination on soil properties, maize (Zea mays L.) growth characteristics, and cadmium accumulation in maize in loessial soil-maize systems. Zhang J; Hao A; Zhao B; Ma F; Zhang X; Zhang Y; Duan K; Li Y Environ Pollut; 2024 Sep; 356():124363. PubMed ID: 38880325 [TBL] [Abstract][Full Text] [Related]
5. Responses of maize (Zea mays L.) seedlings growth and physiological traits triggered by polyvinyl chloride microplastics is dominated by soil available nitrogen. Zhang K; Gao N; Li Y; Dou S; Liu Z; Chen Y; Ma C; Zhang H Ecotoxicol Environ Saf; 2023 Mar; 252():114618. PubMed ID: 36774799 [TBL] [Abstract][Full Text] [Related]
6. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Wang F; Zhang X; Zhang S; Zhang S; Sun Y Chemosphere; 2020 Sep; 254():126791. PubMed ID: 32320834 [TBL] [Abstract][Full Text] [Related]
7. Earthworm activity effectively mitigated the negative impact of microplastics on maize growth. Li Y; Wang J; Shao M; Jia H J Hazard Mater; 2023 Oct; 459():132121. PubMed ID: 37499490 [TBL] [Abstract][Full Text] [Related]
8. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth. Chen X; Zheng X; Fu W; Liu A; Wang W; Wang G; Ji J; Guan C Chemosphere; 2023 Dec; 345():140444. PubMed ID: 37839745 [TBL] [Abstract][Full Text] [Related]
9. Co-exposure of maize to polyethylene microplastics and ZnO nanoparticles: Impact on growth, fate, and interaction. Sun H; Li Z; Wen J; Zhou Q; Gong Y; Zhao X; Mao H Sci Total Environ; 2023 Jun; 876():162705. PubMed ID: 36907408 [TBL] [Abstract][Full Text] [Related]
10. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots. Li H; Chang X; Zhang J; Wang Y; Zhong R; Wang L; Wei J; Wang Y Chemosphere; 2023 Feb; 313():137491. PubMed ID: 36493893 [TBL] [Abstract][Full Text] [Related]
11. Effects of microplastics on the environmental behaviors of the herbicide atrazine in soil: Dissipation, adsorption, and bioconcentration. Guo J; Du Y; Yang L; Luo Y; Zhong G; Zhao HM; Liu J J Hazard Mater; 2024 Mar; 465():133085. PubMed ID: 38070269 [TBL] [Abstract][Full Text] [Related]
12. [Effects of Combined Pollution of Microplastics and Cadmium on Microbial Community Structure and Function of Duan LY; Zhang Y; Ren XM; Li YY; Zhang YJ; Zhang H; Han H; Chen ZJ Huan Jing Ke Xue; 2023 Dec; 44(12):6973-6981. PubMed ID: 38098420 [TBL] [Abstract][Full Text] [Related]
13. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). Li Y; Feng H; Xian S; Wang J; Zheng X; Song X Plant Physiol Biochem; 2023 Oct; 203():108065. PubMed ID: 37797385 [TBL] [Abstract][Full Text] [Related]
14. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat-maize rotation. Zhang J; Li Z; Zhou X; Ding W; Wang X; Zhao M; Li H; Zou G; Chen Y Sci Total Environ; 2023 Mar; 866():161123. PubMed ID: 36586695 [TBL] [Abstract][Full Text] [Related]
15. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. Lian Y; Shi R; Liu J; Zeb A; Wang Q; Wang J; Yu M; Li J; Zheng Z; Ali N; Bao Y; Liu W J Hazard Mater; 2024 Mar; 465():133417. PubMed ID: 38183945 [TBL] [Abstract][Full Text] [Related]
16. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Yu L; Zhang J; Liu Y; Chen L; Tao S; Liu W Sci Total Environ; 2021 Feb; 756():143860. PubMed ID: 33302081 [TBL] [Abstract][Full Text] [Related]
17. Microplastic particles alter wheat rhizosphere soil microbial community composition and function. Zhu J; Liu S; Wang H; Wang D; Zhu Y; Wang J; He Y; Zheng Q; Zhan X J Hazard Mater; 2022 Aug; 436():129176. PubMed ID: 35739711 [TBL] [Abstract][Full Text] [Related]
18. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Lian Y; Liu W; Shi R; Zeb A; Wang Q; Li J; Zheng Z; Tang J J Hazard Mater; 2022 Aug; 435():129057. PubMed ID: 35650727 [TBL] [Abstract][Full Text] [Related]
19. Detecting microplastics in organic-rich materials and their potential risks to earthworms in agroecosystems. Rezaei Rashti M; Hintz J; Esfandbod M; Bahadori M; Lan Z; Chen C Waste Manag; 2023 Jul; 166():96-103. PubMed ID: 37167710 [TBL] [Abstract][Full Text] [Related]
20. Responses of mangrove (Kandelia obovata) growth, photosynthesis, and rhizosphere soil properties to microplastic pollution. Chai M; Li R; Li B; Wu H; Yu L Mar Pollut Bull; 2023 Apr; 189():114827. PubMed ID: 36931158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]