These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37925014)

  • 1. Predicting the allergenic risk of Phosphite-NAD
    Zamani K; Mohsenpour M; Malboobi MA
    Food Chem Toxicol; 2023 Dec; 182():114094. PubMed ID: 37925014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.).
    Pandeya D; Campbell LM; Nunes E; Lopez-Arredondo DL; Janga MR; Herrera-Estrella L; Rathore KS
    Plant Mol Biol; 2017 Dec; 95(6):567-577. PubMed ID: 29032395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation.
    Nahampun HN; López-Arredondo D; Xu X; Herrera-Estrella L; Wang K
    Plant Cell Rep; 2016 May; 35(5):1121-32. PubMed ID: 26883223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk.
    Herman RA; Hou Z; Mirsky H; Nelson ME; Mathesius CA; Roper JM
    Transgenic Res; 2021 Apr; 30(2):201-206. PubMed ID: 33761048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism.
    López-Arredondo DL; Herrera-Estrella L
    Plant Biotechnol J; 2013 May; 11(4):516-25. PubMed ID: 23530523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Will genetically modified foods be allergenic?
    Taylor SL; Hefle SL
    J Allergy Clin Immunol; 2001 May; 107(5):765-71. PubMed ID: 11344340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE - binding linear epitopes of allergens.
    Kleter GA; Peijnenburg AA
    BMC Struct Biol; 2002 Dec; 2():8. PubMed ID: 12477382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive in silico allergenicity assessment of novel protein engineered chimeric Cry proteins for safe deployment in crops.
    Rathinam M; Singh S; Pattanayak D; Sreevathsa R
    BMC Biotechnol; 2017 Aug; 17(1):64. PubMed ID: 28768539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii.
    Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA
    Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic analysis for allergenicity assessment of Bacillus thuringiensis Cry proteins expressed in insect-resistant food crops.
    Randhawa GJ; Singh M; Grover M
    Food Chem Toxicol; 2011 Feb; 49(2):356-62. PubMed ID: 21078358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas.
    Changko S; Rajakumar PD; Young REB; Purton S
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):675-686. PubMed ID: 31788712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops.
    Verma AK; Misra A; Subash S; Das M; Dwivedi PD
    Immunopharmacol Immunotoxicol; 2011 Sep; 33(3):410-22. PubMed ID: 20964517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88.
    Costas AM; White AK; Metcalf WW
    J Biol Chem; 2001 May; 276(20):17429-36. PubMed ID: 11278981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allergenicity assessment of Allium sativum leaf agglutinin, a potential candidate protein for developing sap sucking insect resistant food crops.
    Mondal HA; Chakraborti D; Majumder P; Roy P; Roy A; Bhattacharya SG; Das S
    PLoS One; 2011; 6(11):e27716. PubMed ID: 22110739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.
    Young GJ; Zhang S; Mirsky HP; Cressman RF; Cong B; Ladics GS; Zhong CX
    Food Chem Toxicol; 2012 Oct; 50(10):3741-51. PubMed ID: 22867756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the potential allergenicity of genetically-engineered food crops.
    Ladics GS
    J Immunotoxicol; 2019 Dec; 16(1):43-53. PubMed ID: 30409058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid simulated gastric fluid digestion of in-seed/grain proteins expressed in genetically engineered crops.
    Schafer BW; Embrey SK; Herman RA
    Regul Toxicol Pharmacol; 2016 Nov; 81():106-112. PubMed ID: 27497625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous allergens in the regulatory assessment of genetically engineered crops.
    Graf L; Hayder H; Mueller U
    Food Chem Toxicol; 2014 Nov; 73():17-20. PubMed ID: 25128445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM; Metcalf WW
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive COMPARE database reduces allergenic risk of novel food proteins.
    Herman RA; Song P
    GM Crops Food; 2022 Dec; 13(1):112-118. PubMed ID: 35674136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.