These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37925118)
1. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Zou X; Zhang K; Wu D; Lu M; Wang H; Shen Q Gene; 2024 Feb; 895():147953. PubMed ID: 37925118 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Wu D; Zhang K; Li CY; Xie GW; Lu MT; Qian Y; Shu YP; Shen Q Gene; 2023 Dec; 889():147808. PubMed ID: 37722611 [TBL] [Abstract][Full Text] [Related]
3. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed. Zhang T; Song C; Song L; Shang Z; Yang S; Zhang D; Sun W; Shen Q; Zhao D Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29144390 [No Abstract] [Full Text] [Related]
4. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W Cells; 2021 Dec; 11(1):. PubMed ID: 35011633 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens. Kim HU; Lee KR; Shim D; Lee JH; Chen GQ; Hwang S BMC Genomics; 2016 Jun; 17():474. PubMed ID: 27342315 [TBL] [Abstract][Full Text] [Related]
7. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn. Wang L; Ruan C; Bao A; Li H BMC Plant Biol; 2021 Oct; 21(1):464. PubMed ID: 34641783 [TBL] [Abstract][Full Text] [Related]
8. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Zhou Y; Huang X; Hu T; Chen S; Wang Y; Shi X; Yin M; Li R; Wang J; Jia X Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894786 [TBL] [Abstract][Full Text] [Related]
10. [Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Zhou Y; Huang X; Hao Y; Cai G; Shi X; Li R; Wang J Sheng Wu Gong Cheng Xue Bao; 2022 Aug; 38(8):3014-3028. PubMed ID: 36002428 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome and miRNA sequencing analyses reveal the regulatory mechanism of α-linolenic acid biosynthesis in Paeonia rockii. Zheng J; Yang J; Yang X; Cao Z; Cai S; Wang B; Ye J; Fu M; Zhang W; Rao S; Du D; Liao Y; Jiang X; Xu F Food Res Int; 2022 May; 155():111094. PubMed ID: 35400468 [TBL] [Abstract][Full Text] [Related]
12. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. Lee KR; Kim KH; Kim JB; Hong SB; Jeon I; Kim HU; Lee MH; Kim JK BMC Plant Biol; 2019 Apr; 19(1):120. PubMed ID: 30935415 [TBL] [Abstract][Full Text] [Related]
13. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut ( Zhao X; Yang G; Liu X; Yu Z; Peng S Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260456 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide association analysis of the lipid and fatty acid metabolism regulatory network in the mesocarp of oil palm (Elaeis guineensis Jacq.) based on small noncoding RNA sequencing. Zheng Y; Chen C; Liang Y; Sun R; Gao L; Liu T; Li D Tree Physiol; 2019 Mar; 39(3):356-371. PubMed ID: 30137626 [TBL] [Abstract][Full Text] [Related]
15. PfbZIP85 Transcription Factor Mediates ω-3 Fatty Acid-Enriched Oil Biosynthesis by Down-Regulating Huang X; Zhou Y; Shi X; Wen J; Sun Y; Chen S; Hu T; Li R; Wang J; Jia X Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673960 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing. Bao H; Chen M; Chen H; Du L; Wang Y Genes Genomics; 2019 Jul; 41(7):849-861. PubMed ID: 30912003 [TBL] [Abstract][Full Text] [Related]
17. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying. Feng JL; Yang ZJ; Chen SP; El-Kassaby YA; Chen H BMC Genomics; 2017 Jul; 18(1):546. PubMed ID: 28728593 [TBL] [Abstract][Full Text] [Related]
18. Engineering the Staple Oil Crop Xue YF; Fu C; Chai CY; Liao FF; Chen BJ; Wei SZ; Wang R; Gao H; Fan TT; Chai YR J Agric Food Chem; 2023 May; 71(19):7324-7333. PubMed ID: 37130169 [TBL] [Abstract][Full Text] [Related]
19. Identification of miRNAs Mediating Seed Storability of Maize during Germination Stage by High-Throughput Sequencing, Transcriptome and Degradome Sequencing. Song Y; Lv Z; Wang Y; Li C; Jia Y; Zhu Y; Cao M; Zhou Y; Zeng X; Wang Z; Zhang L; Di H Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293196 [TBL] [Abstract][Full Text] [Related]
20. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. Wei W; Li G; Jiang X; Wang Y; Ma Z; Niu Z; Wang Z; Geng X PLoS One; 2018; 13(10):e0204998. PubMed ID: 30332454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]