BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37925180)

  • 1. Pri-miRNA cleavage assays for the Microprocessor complex.
    Le TN; Le CT; Nguyen TA
    Methods Enzymol; 2023; 692():217-230. PubMed ID: 37925180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulges control pri-miRNA processing in a position and strand-dependent manner.
    Li S; Le TN; Nguyen TD; Trinh TA; Nguyen TA
    RNA Biol; 2021 Nov; 18(11):1716-1726. PubMed ID: 33382955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of the Caenorhabditis elegans Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Nguyen TA
    Nucleic Acids Res; 2023 Feb; 51(4):1512-1527. PubMed ID: 36598924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncanonical processing by animal Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Le TN; Nguyen TA
    Mol Cell; 2023 Jun; 83(11):1810-1826.e8. PubMed ID: 37267903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for pri-miRNA Recognition by Drosha.
    Jin W; Wang J; Liu CP; Wang HW; Xu RM
    Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor.
    Li S; Nguyen TD; Nguyen TL; Nguyen TA
    Nat Commun; 2020 Apr; 11(1):1926. PubMed ID: 32317642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor.
    Le MN; Nguyen TD; Nguyen TA
    Life Sci Alliance; 2023 Apr; 6(4):. PubMed ID: 36750366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA.
    Burke JM; Kelenis DP; Kincaid RP; Sullivan CS
    RNA; 2014 Jul; 20(7):1068-77. PubMed ID: 24854622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates.
    Kim B; Jeong K; Kim VN
    Mol Cell; 2017 Apr; 66(2):258-269.e5. PubMed ID: 28431232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary microRNA processing assay reconstituted using recombinant Drosha and DGCR8.
    Barr I; Guo F
    Methods Mol Biol; 2014; 1095():73-86. PubMed ID: 24166303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
    Roth BM; Ishimaru D; Hennig M
    J Biol Chem; 2013 Sep; 288(37):26785-99. PubMed ID: 23893406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures.
    Faller M; Toso D; Matsunaga M; Atanasov I; Senturia R; Chen Y; Zhou ZH; Guo F
    RNA; 2010 Aug; 16(8):1570-83. PubMed ID: 20558544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
    Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN
    Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor.
    Nguyen TL; Nguyen TD; Bao S; Li S; Nguyen TA
    Nucleic Acids Res; 2020 Mar; 48(5):2579-2593. PubMed ID: 31956890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Anatomy of the Human Microprocessor.
    Nguyen TA; Jo MH; Choi YG; Park J; Kwon SC; Hohng S; Kim VN; Woo JS
    Cell; 2015 Jun; 161(6):1374-87. PubMed ID: 26027739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation of Human Microprocessor on Primary MicroRNAs.
    Nguyen HM; Nguyen TD; Nguyen TL; Nguyen TA
    Biochemistry; 2019 Jan; 58(4):189-198. PubMed ID: 30481000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative map of human primary microRNA processing sites.
    Kim K; Baek SC; Lee YY; Bastiaanssen C; Kim J; Kim H; Kim VN
    Mol Cell; 2021 Aug; 81(16):3422-3439.e11. PubMed ID: 34320405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Atlas of Primary miRNA Maturation by the Microprocessor.
    Rice GM; Shivashankar V; Ma EJ; Baryza JL; Nutiu R
    Mol Cell; 2020 Dec; 80(5):892-902.e4. PubMed ID: 33188727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.