These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 37925211)
41. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
42. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation. Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631 [TBL] [Abstract][Full Text] [Related]
43. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. Vincze V; Szarvas G; Farkas R; Móra G; Csirik J BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S9. PubMed ID: 19025695 [TBL] [Abstract][Full Text] [Related]
44. NCBI disease corpus: a resource for disease name recognition and concept normalization. Doğan RI; Leaman R; Lu Z J Biomed Inform; 2014 Feb; 47():1-10. PubMed ID: 24393765 [TBL] [Abstract][Full Text] [Related]
45. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome. Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411 [TBL] [Abstract][Full Text] [Related]
46. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification. Li X; Yuan W; Peng D; Mei Q; Wang Y BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811 [TBL] [Abstract][Full Text] [Related]
47. Classifying Characteristics of Opioid Use Disorder From Hospital Discharge Summaries Using Natural Language Processing. Poulsen MN; Freda PJ; Troiani V; Davoudi A; Mowery DL Front Public Health; 2022; 10():850619. PubMed ID: 35615042 [TBL] [Abstract][Full Text] [Related]
48. "Note Bloat" impacts deep learning-based NLP models for clinical prediction tasks. Liu J; Capurro D; Nguyen A; Verspoor K J Biomed Inform; 2022 Sep; 133():104149. PubMed ID: 35878821 [TBL] [Abstract][Full Text] [Related]
49. Speculation detection for Chinese clinical notes: Impacts of word segmentation and embedding models. Zhang S; Kang T; Zhang X; Wen D; Elhadad N; Lei J J Biomed Inform; 2016 Apr; 60():334-41. PubMed ID: 26923634 [TBL] [Abstract][Full Text] [Related]
50. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification. Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729 [TBL] [Abstract][Full Text] [Related]
51. Temporal information extraction from mental health records to identify duration of untreated psychosis. Viani N; Kam J; Yin L; Bittar A; Dutta R; Patel R; Stewart R; Velupillai S J Biomed Semantics; 2020 Mar; 11(1):2. PubMed ID: 32156302 [TBL] [Abstract][Full Text] [Related]
52. Ensembles of natural language processing systems for portable phenotyping solutions. Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273 [TBL] [Abstract][Full Text] [Related]
53. An interpretable natural language processing system for written medical examination assessment. Sarker A; Klein AZ; Mee J; Harik P; Gonzalez-Hernandez G J Biomed Inform; 2019 Oct; 98():103268. PubMed ID: 31421211 [TBL] [Abstract][Full Text] [Related]
54. An open source corpus and automatic tool for section identification in Spanish health records. de la Iglesia I; Vivó M; Chocrón P; Maeztu G; Gojenola K; Atutxa A J Biomed Inform; 2023 Sep; 145():104461. PubMed ID: 37536643 [TBL] [Abstract][Full Text] [Related]
55. Web 2.0-based crowdsourcing for high-quality gold standard development in clinical natural language processing. Zhai H; Lingren T; Deleger L; Li Q; Kaiser M; Stoutenborough L; Solti I J Med Internet Res; 2013 Apr; 15(4):e73. PubMed ID: 23548263 [TBL] [Abstract][Full Text] [Related]
56. Classifying literature mentions of biological pathogens as experimentally studied using natural language processing. Jimeno Yepes AJ; Verspoor K J Biomed Semantics; 2023 Jan; 14(1):1. PubMed ID: 36721225 [TBL] [Abstract][Full Text] [Related]
57. Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports. Senders JT; Karhade AV; Cote DJ; Mehrtash A; Lamba N; DiRisio A; Muskens IS; Gormley WB; Smith TR; Broekman MLD; Arnaout O JCO Clin Cancer Inform; 2019 Apr; 3():1-9. PubMed ID: 31002562 [TBL] [Abstract][Full Text] [Related]
58. Inventory of tools for Dutch clinical language processing. Cornet R; Van Eldik A; De Keizer N Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189 [TBL] [Abstract][Full Text] [Related]
59. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here. Khosravi B; Rouzrokh P; Erickson BJ J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045 [TBL] [Abstract][Full Text] [Related]
60. Natural Language Processing Applications in the Clinical Neurosciences: A Machine Learning Augmented Systematic Review. Buchlak QD; Esmaili N; Bennett C; Farrokhi F Acta Neurochir Suppl; 2022; 134():277-289. PubMed ID: 34862552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]