These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 37925211)
61. French FastContext: A publicly accessible system for detecting negation, temporality and experiencer in French clinical notes. Mirzapour M; Abdaoui A; Tchechmedjiev A; Digan W; Bringay S; Jonquet C J Biomed Inform; 2021 May; 117():103733. PubMed ID: 33737205 [TBL] [Abstract][Full Text] [Related]
62. Negation's not solved: generalizability versus optimizability in clinical natural language processing. Wu S; Miller T; Masanz J; Coarr M; Halgrim S; Carrell D; Clark C PLoS One; 2014; 9(11):e112774. PubMed ID: 25393544 [TBL] [Abstract][Full Text] [Related]
63. Increasing adverse drug events extraction robustness on social media: Case study on negation and speculation. Scaboro S; Portelli B; Chersoni E; Santus E; Serra G Exp Biol Med (Maywood); 2022 Nov; 247(22):2003-2014. PubMed ID: 36314865 [TBL] [Abstract][Full Text] [Related]
64. Causal relationship extraction from biomedical text using deep neural models: A comprehensive survey. Akkasi A; Moens MF J Biomed Inform; 2021 Jul; 119():103820. PubMed ID: 34044157 [TBL] [Abstract][Full Text] [Related]
65. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis. Young IJB; Luz S; Lone N Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063 [TBL] [Abstract][Full Text] [Related]
66. Leveraging rich annotations to improve learning of medical concepts from clinical free text. Yu S; Farooq F; Krishnapuram B; Rao B AMIA Annu Symp Proc; 2011; 2011():1603-11. PubMed ID: 22195226 [TBL] [Abstract][Full Text] [Related]
67. Transformer-based models for ICD-10 coding of death certificates with Portuguese text. Coutinho I; Martins B J Biomed Inform; 2022 Dec; 136():104232. PubMed ID: 36307020 [TBL] [Abstract][Full Text] [Related]
68. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
69. CARES: A Corpus for classification of Spanish Radiological reports. Chizhikova M; López-Úbeda P; Collado-Montañez J; Martín-Noguerol T; Díaz-Galiano MC; Luna A; Ureña-López LA; Martín-Valdivia MT Comput Biol Med; 2023 Mar; 154():106581. PubMed ID: 36701968 [TBL] [Abstract][Full Text] [Related]
70. Validating a strategy for psychosocial phenotyping using a large corpus of clinical text. Gundlapalli AV; Redd A; Carter M; Divita G; Shen S; Palmer M; Samore MH J Am Med Inform Assoc; 2013 Dec; 20(e2):e355-64. PubMed ID: 24169276 [TBL] [Abstract][Full Text] [Related]
71. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
72. An interpretable deep learning framework for predicting liver metastases in postoperative colorectal cancer patients using natural language processing and clinical data integration. Li J; Wang X; Cai L; Sun J; Yang Z; Liu W; Wang Z; Lv H Cancer Med; 2023 Sep; 12(18):19337-19351. PubMed ID: 37694452 [TBL] [Abstract][Full Text] [Related]
73. Do You Need Embeddings Trained on a Massive Specialized Corpus for Your Clinical Natural Language Processing Task? Neuraz A; Looten V; Rance B; Daniel N; Garcelon N; Llanos LC; Burgun A; Rosset S Stud Health Technol Inform; 2019 Aug; 264():1558-1559. PubMed ID: 31438230 [TBL] [Abstract][Full Text] [Related]
74. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
75. A Review of Recent Work in Transfer Learning and Domain Adaptation for Natural Language Processing of Electronic Health Records. Laparra E; Mascio A; Velupillai S; Miller T Yearb Med Inform; 2021 Aug; 30(1):239-244. PubMed ID: 34479396 [TBL] [Abstract][Full Text] [Related]
76. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641 [TBL] [Abstract][Full Text] [Related]
77. Extracting medication changes in clinical narratives using pre-trained language models. Ramachandran GK; Lybarger K; Liu Y; Mahajan D; Liang JJ; Tsou CH; Yetisgen M; Uzuner Ö J Biomed Inform; 2023 Mar; 139():104302. PubMed ID: 36754129 [TBL] [Abstract][Full Text] [Related]
78. Recognizing Questions and Answers in EMR Templates Using Natural Language Processing. Divita G; Shen S; Carter ME; Redd A; Forbush T; Palmer M; Samore MH; Gundlapalli AV Stud Health Technol Inform; 2014; 202():149-52. PubMed ID: 25000038 [TBL] [Abstract][Full Text] [Related]
79. No means 'No': a non-improper modeling approach, with embedded speculative context. Tiwary P; Madhubalan A; Gautam A Bioinformatics; 2022 Oct; 38(20):4790-4796. PubMed ID: 36040145 [TBL] [Abstract][Full Text] [Related]