BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37925215)

  • 1. Uncovering hidden therapeutic indications through drug repurposing with graph neural networks and heterogeneous data.
    Ayuso-Muñoz A; Prieto-Santamaría L; Ugarte-Carro E; Serrano E; Rodríguez-González A
    Artif Intell Med; 2023 Nov; 145():102687. PubMed ID: 37925215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network.
    He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J
    J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug repurposing based on the DTD-GNN graph neural network: revealing the relationships among drugs, targets and diseases.
    Li W; Ma W; Yang M; Tang X
    BMC Genomics; 2024 Jun; 25(1):584. PubMed ID: 38862928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing.
    Tayebi J; BabaAli B
    J Chem Inf Model; 2024 Mar; 64(6):1868-1881. PubMed ID: 38483449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases.
    Sosa DN; Derry A; Guo M; Wei E; Brinton C; Altman RB
    Pac Symp Biocomput; 2020; 25():463-474. PubMed ID: 31797619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational approach to drug repurposing using graph neural networks.
    Doshi S; Chepuri SP
    Comput Biol Med; 2022 Nov; 150():105992. PubMed ID: 36228466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing.
    Ghorbanali Z; Zare-Mirakabad F; Salehi N; Akbari M; Masoudi-Nejad A
    BMC Bioinformatics; 2023 Oct; 24(1):374. PubMed ID: 37789314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph.
    Zhu Y; Che C; Jin B; Zhang N; Su C; Wang F
    Health Informatics J; 2020 Dec; 26(4):2737-2750. PubMed ID: 32674665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knowledge Graph Convolutional Network with Heuristic Search for Drug Repositioning.
    Du X; Sun X; Li M
    J Chem Inf Model; 2024 Jun; 64(12):4928-4937. PubMed ID: 38837744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction.
    Li M; Cai X; Xu S; Ji H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug repurposing for COVID-19 via knowledge graph completion.
    Zhang R; Hristovski D; Schutte D; Kastrin A; Fiszman M; Kilicoglu H
    J Biomed Inform; 2021 Mar; 115():103696. PubMed ID: 33571675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-driven methodology towards evaluating the potential of drug repurposing hypotheses.
    Prieto Santamaría L; Ugarte Carro E; Díaz Uzquiano M; Menasalvas Ruiz E; Pérez Gallardo Y; Rodríguez-González A
    Comput Struct Biotechnol J; 2021; 19():4559-4573. PubMed ID: 34471499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adera2.0: A Drug Repurposing Workflow for Neuroimmunological Investigations Using Neural Networks.
    Lazarczyk M; Duda K; Mickael ME; Ak O; Paszkiewicz J; Kowalczyk A; Horbańczuk JO; Sacharczuk M
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GraphDTA: predicting drug-target binding affinity with graph neural networks.
    Nguyen T; Le H; Quinn TP; Nguyen T; Le TD; Venkatesh S
    Bioinformatics; 2021 May; 37(8):1140-1147. PubMed ID: 33119053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks.
    Nam Y; Lucas A; Yun JS; Lee SM; Park JW; Chen Z; Lee B; Ning X; Shen L; Verma A; Kim D
    J Transl Med; 2023 Jun; 21(1):415. PubMed ID: 37365631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.