These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37925217)

  • 1. Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations.
    Zhong Y; Shen C; Xi X; Luo Y; Ding P; Luo L
    Artif Intell Med; 2023 Nov; 145():102665. PubMed ID: 37925217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder.
    Wang S; Lin B; Zhang Y; Qiao S; Wang F; Wu W; Ren C
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism.
    Jin C; Shi Z; Lin K; Zhang H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.
    Li L; Wang YT; Ji CM; Zheng CH; Ni JC; Su YS
    PLoS Comput Biol; 2021 Dec; 17(12):e1009655. PubMed ID: 34890410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction.
    Ma M; Na S; Zhang X; Chen C; Xu J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.
    Liang X; Guo M; Jiang L; Fu Y; Zhang P; Chen Y
    Interdiscip Sci; 2024 Jun; 16(2):289-303. PubMed ID: 38286905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.
    Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP
    Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder.
    Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network embedding-based multiple information integration method for the MiRNA-disease association prediction.
    Gong Y; Niu Y; Zhang W; Li X
    BMC Bioinformatics; 2019 Sep; 20(1):468. PubMed ID: 31510919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.
    Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.