These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis. Luo X; Zheng R; Zhang J; He J; Luo W; Jiang Z; Li Q Front Oncol; 2024; 14():1329801. PubMed ID: 38384802 [TBL] [Abstract][Full Text] [Related]
4. Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI. Yang H; Wang W; Cheng Z; Zheng T; Cheng C; Cheng M; Wang Z Technol Cancer Res Treat; 2024; 23():15330338241288751. PubMed ID: 39431304 [TBL] [Abstract][Full Text] [Related]
5. Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis. Ma D; Zhou T; Chen J; Chen J BMC Med Imaging; 2024 Jun; 24(1):144. PubMed ID: 38867143 [TBL] [Abstract][Full Text] [Related]
6. MRI radiomics for the preoperative evaluation of lymphovascular invasion in breast cancer: A meta-analysis. Ma Q; Li Z; Li W; Chen Q; Liu X; Feng W; Lei J Eur J Radiol; 2023 Nov; 168():111127. PubMed ID: 37801997 [TBL] [Abstract][Full Text] [Related]
7. Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis. Wu T; Gao C; Lou X; Wu J; Xu M; Wu L BMC Pulm Med; 2024 May; 24(1):246. PubMed ID: 38762472 [TBL] [Abstract][Full Text] [Related]
8. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer. Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478 [TBL] [Abstract][Full Text] [Related]
9. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Wang M; Mei T; Gong Y Br J Radiol; 2023 Oct; 96(1150):20230172. PubMed ID: 37724784 [TBL] [Abstract][Full Text] [Related]
10. Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review. Bao Z; Du J; Zheng Y; Guo Q; Ji R Front Oncol; 2024; 14():1363812. PubMed ID: 38601765 [TBL] [Abstract][Full Text] [Related]
11. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Jia LL; Zheng QY; Tian JH; He DL; Zhao JX; Zhao LP; Huang G Front Oncol; 2022; 12():1026216. PubMed ID: 36313696 [TBL] [Abstract][Full Text] [Related]
12. Radiomics for the identification of extraprostatic extension with prostate MRI: a systematic review and meta-analysis. Ponsiglione A; Gambardella M; Stanzione A; Green R; Cantoni V; Nappi C; Crocetto F; Cuocolo R; Cuocolo A; Imbriaco M Eur Radiol; 2024 Jun; 34(6):3981-3991. PubMed ID: 37955670 [TBL] [Abstract][Full Text] [Related]
13. Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps. Zhang Y; Zhu Y; Zhang K; Liu Y; Cui J; Tao J; Wang Y; Wang S Radiol Med; 2020 Feb; 125(2):109-116. PubMed ID: 31696388 [TBL] [Abstract][Full Text] [Related]
14. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. Doniselli FM; Pascuzzo R; Mazzi F; Padelli F; Moscatelli M; Akinci D'Antonoli T; Cuocolo R; Aquino D; Cuccarini V; Sconfienza LM Eur Radiol; 2024 Sep; 34(9):5802-5815. PubMed ID: 38308012 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis. Zhang H; Lei H; Pang J Front Oncol; 2022; 12():975183. PubMed ID: 36119492 [TBL] [Abstract][Full Text] [Related]
16. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Liang X; Yu X; Gao T Eur J Radiol; 2022 May; 150():110247. PubMed ID: 35290910 [TBL] [Abstract][Full Text] [Related]
17. A meta-analysis of MRI-based radiomic features for predicting lymph node metastasis in patients with cervical cancer. Li L; Zhang J; Zhe X; Tang M; Zhang X; Lei X; Zhang L Eur J Radiol; 2022 Jun; 151():110243. PubMed ID: 35366583 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic Performance of Radiomics and Deep Learning to Identify Benign and Malignant Soft Tissue Tumors: A Systematic Review and Meta-analysis. Dai X; Zhao B; Zang J; Wang X; Liu Z; Sun T; Yu H; Sui X Acad Radiol; 2024 Oct; 31(10):3956-3967. PubMed ID: 38614826 [TBL] [Abstract][Full Text] [Related]
19. Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study. Jiang T; Song J; Wang X; Niu S; Zhao N; Dong Y; Wang X; Luo Y; Jiang X Mol Imaging Biol; 2022 Aug; 24(4):550-559. PubMed ID: 34904187 [TBL] [Abstract][Full Text] [Related]
20. MRI-based radiomics models for noninvasive evaluation of lymphovascular space invasion in cervical cancer: a systematic review and meta-analysis. Zhang H; Teng C; Yao Y; Bian W; Chen J; Liu H; Wang Z Clin Radiol; 2024 Nov; 79(11):e1372-e1382. PubMed ID: 39183137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]