These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37925463)

  • 1. A computational model for structural dynamics and reconfiguration of DNA assemblies.
    Lee JY; Koh H; Kim DN
    Nat Commun; 2023 Nov; 14(1):7079. PubMed ID: 37925463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution.
    Lee JY; Lee JG; Yun G; Lee C; Kim YJ; Kim KS; Kim TH; Kim DN
    ACS Nano; 2021 Jan; 15(1):1002-1015. PubMed ID: 33410664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and conformational dynamics of scaffolded DNA origami nanoparticles.
    Pan K; Bricker WP; Ratanalert S; Bathe M
    Nucleic Acids Res; 2017 Jun; 45(11):6284-6298. PubMed ID: 28482032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.
    Sedeh RS; Pan K; Adendorff MR; Hallatschek O; Bathe KJ; Bathe M
    J Chem Theory Comput; 2016 Jan; 12(1):261-73. PubMed ID: 26636351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
    Takada S; Kanada R; Tan C; Terakawa T; Li W; Kenzaki H
    Acc Chem Res; 2015 Dec; 48(12):3026-35. PubMed ID: 26575522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close encounters with DNA.
    Maffeo C; Yoo J; Comer J; Wells DB; Luan B; Aksimentiev A
    J Phys Condens Matter; 2014 Oct; 26(41):413101. PubMed ID: 25238560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable and dynamic G-quadruplexes and their applications.
    Dong J; O'Hagan MP; Willner I
    Chem Soc Rev; 2022 Aug; 51(17):7631-7661. PubMed ID: 35975685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)(2) B<-->A intermediate crystal structure.
    Poner J; Florián J; Ng HL; Poner JE; Packová N
    Nucleic Acids Res; 2000 Dec; 28(24):4893-902. PubMed ID: 11121480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and stimuli-responsiveness of all-DNA dendrimers: theory and experiment.
    Jochum C; AdŽić N; Stiakakis E; Derrien TL; Luo D; Kahl G; Likos CN
    Nanoscale; 2019 Jan; 11(4):1604-1617. PubMed ID: 30311616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials.
    Wang J; Li Z; Willner I
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202215332. PubMed ID: 36651472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico single-molecule manipulation of DNA with rigid body dynamics.
    Carrivain P; Barbi M; Victor JM
    PLoS Comput Biol; 2014 Feb; 10(2):e1003456. PubMed ID: 24586127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is DNA's rigidity dominated by electrostatic or nonelectrostatic interactions?
    Savelyev A; Materese CK; Papoian GA
    J Am Chem Soc; 2011 Dec; 133(48):19290-3. PubMed ID: 22039974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics of double-stranded DNA in periodic systems with discrete salt.
    Mielke SP; Grønbech-Jensen N; Benham CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031924. PubMed ID: 18517439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).
    Ganesan N; Bauer BA; Lucas TR; Patel S; Taufer M
    J Comput Chem; 2011 Nov; 32(14):2958-73. PubMed ID: 21793003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence.
    Davtyan A; Dama JF; Voth GA; Andersen HC
    J Chem Phys; 2015 Apr; 142(15):154104. PubMed ID: 25903863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System.
    Richards NGJ; Georgiadis MM
    Acc Chem Res; 2017 Jun; 50(6):1375-1382. PubMed ID: 28594167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.