BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37925546)

  • 1. Decarbonization potential of electrifying 50% of U.S. light-duty vehicle sales by 2030.
    Woody M; Keoleian GA; Vaishnav P
    Nat Commun; 2023 Nov; 14(1):7077. PubMed ID: 37925546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Decreases in Tailpipe Criteria Pollutant Emissions from the U.S. Light-Duty Vehicle Fleet Expected in 2020-2040.
    Dolan RH; Wallington TJ; Anderson JE
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38323898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns.
    Cai H; Xu M
    Environ Sci Technol; 2013 Aug; 47(16):9035-43. PubMed ID: 23869607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring decarbonization pathways for USA passenger and freight mobility.
    Hoehne C; Muratori M; Jadun P; Bush B; Yip A; Ledna C; Vimmerstedt L; Podkaminer K; Ma O
    Nat Commun; 2023 Oct; 14(1):6913. PubMed ID: 37903758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Well Do We Know the Future of CO
    Martin NP; Bishop JD; Boies AM
    Environ Sci Technol; 2017 Mar; 51(5):3093-3101. PubMed ID: 28178418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles.
    Wu D; Guo F; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE
    Environ Sci Technol; 2019 Sep; 53(18):10560-10570. PubMed ID: 31336049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet.
    Woody M; Vaishnav P; Craig MT; Keoleian GA
    Environ Sci Technol; 2022 Sep; 56(18):13391-13397. PubMed ID: 36018721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL
    Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India.
    Peshin T; Sengupta S; Azevedo IML
    Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air Quality Impacts of Electrifying Vehicles and Equipment Across the United States.
    Nopmongcol U; Grant J; Knipping E; Alexander M; Schurhoff R; Young D; Jung J; Shah T; Yarwood G
    Environ Sci Technol; 2017 Mar; 51(5):2830-2837. PubMed ID: 28221773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.
    Reyna JL; Chester MV; Ahn S; Fraser AM
    Environ Sci Technol; 2015 Jan; 49(1):369-76. PubMed ID: 25438089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Health and Climate Incentives for the Deployment of Cleaner On-Road Vehicle Technologies.
    Minet L; Wang A; Hatzopoulou M
    Environ Sci Technol; 2021 May; 55(10):6602-6612. PubMed ID: 33929197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensuring greenhouse gas reductions from electric vehicles compared to hybrid gasoline vehicles requires a cleaner U.S. electricity grid.
    Singh M; Yuksel T; Michalek JJ; Azevedo IML
    Sci Rep; 2024 Jan; 14(1):1639. PubMed ID: 38238349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets.
    Tang C; Tukker A; Sprecher B; Mogollón JM
    Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.