These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37925858)

  • 1. Long-term phosphorus removal by Ca and Fe-rich drainage filter materials under variable flow and inlet concentrations.
    Pugliese L; Canga E; Hansen HCB; Kjærgaard C; Heckrath GJ; Poulsen TG
    Water Res; 2023 Dec; 247():120792. PubMed ID: 37925858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials.
    Lyngsie G; Borggaard OK; Hansen HC
    Water Res; 2014 Mar; 51():256-65. PubMed ID: 24275107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.
    Lyngsie G; Penn CJ; Hansen HC; Borggaard OK
    J Environ Manage; 2014 Oct; 143():26-33. PubMed ID: 24833525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters.
    Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S
    Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of reactive phosphorus treatment by filter materials at the edge of tile-drained agricultural catchments: A global view of the current status and challenges.
    Mendes LRD; Pugliese L; Canga E; Wu S; Heckrath GJ
    J Environ Manage; 2022 Dec; 324():116329. PubMed ID: 36183527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of redox on the phosphorus removal ability of iron-rich phosphorus sorption materials.
    Scott ISPC; Penn CJ
    Chemosphere; 2024 Mar; 352():141416. PubMed ID: 38364926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A zero-valent iron and zeolite filter for nitrate recycling from agricultural drainage water.
    Florea AF; Lu C; Hansen HCB
    Chemosphere; 2022 Jan; 287(Pt 1):131993. PubMed ID: 34523440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter.
    Aziz HA; Yusoff MS; Adlan MN; Adnan NH; Alias S
    Waste Manag; 2004; 24(4):353-8. PubMed ID: 15081062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorous sorption by Filtralite P--small scale box experiment.
    Adám K; Krogstad T; Suliman FR; Jenssen PD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1239-50. PubMed ID: 15921279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen Removal in Permeable Woodchip Filters Affected by Hydraulic Loading Rate and Woodchip Ratio.
    Bruun J; Hoffmann CC; Kjaergaard C
    J Environ Qual; 2016 Sep; 45(5):1688-1695. PubMed ID: 27695766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.
    Kynkäänniemi P; Ulén B; Torstensson G; Tonderski KS
    J Environ Qual; 2013; 42(2):596-605. PubMed ID: 23673852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials.
    Nilsson C; Renman G; Westholm LJ; Renman A; Drizo A
    Water Res; 2013 Oct; 47(16):6289-97. PubMed ID: 24001604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment.
    Allred BJ; Racharaks R
    Water Environ Res; 2014 Sep; 86(9):852-62. PubMed ID: 25327026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of highly polluted groundwater by novel iron removal process.
    Sim SJ; Kang CD; Lee JW; Kim WS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(1):25-38. PubMed ID: 11381783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P.
    Sadhukhan D; Qi Z; Zhang TQ; Tan CS; Ma L
    J Environ Qual; 2019 Jul; 48(4):995-1005. PubMed ID: 31589663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Active' filters for upgrading phosphorus removal from pond systems.
    Shilton A; Pratt S; Drizo A; Mahmood B; Banker S; Billings L; Glenny S; Luo D
    Water Sci Technol; 2005; 51(12):111-6. PubMed ID: 16114672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus removal with by-products in a flow-through setting.
    Stoner D; Penn C; McGrath J; Warren J
    J Environ Qual; 2012; 41(3):654-63. PubMed ID: 22565247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of iron-coated sand for removing soluble phosphorus from drainage water.
    Chardon WJ; Groenenberg JE; Vink JPM; Voegelin A; Koopmans GF
    Sci Total Environ; 2022 Apr; 815():152738. PubMed ID: 34974002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands.
    Yin H; Yan X; Gu X
    Water Res; 2017 May; 115():329-338. PubMed ID: 28288312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.