These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37925908)

  • 1. Generating a novel synthetic dataset for rehabilitation exercises using pose-guided conditioned diffusion models: A quantitative and qualitative evaluation.
    Mennella C; Maniscalco U; De Pietro G; Esposito M
    Comput Biol Med; 2023 Dec; 167():107665. PubMed ID: 37925908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions.
    Mennella C; Maniscalco U; Pietro G; Esposito M
    Comput Biol Med; 2023 Nov; 166():107485. PubMed ID: 37742419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.
    Liao Y; Vakanski A; Xian M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):468-477. PubMed ID: 31940544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises.
    Aguilar-Ortega R; Berral-Soler R; Jiménez-Velasco I; Romero-Ramírez FJ; García-Marín M; Zafra-Palma J; Muñoz-Salinas R; Medina-Carnicer R; Marín-Jiménez MJ
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the Accuracy of Movement Tracking Systems for Monitoring Exercise for Musculoskeletal Rehabilitation.
    Obukhov A; Volkov A; Pchelintsev A; Nazarova A; Teselkin D; Surkova E; Fedorchuk I
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation.
    Zhu ZA; Lu YC; You CH; Chiang CK
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of computational approaches for evaluation of rehabilitation exercises.
    Liao Y; Vakanski A; Xian M; Paul D; Baker R
    Comput Biol Med; 2020 Apr; 119():103687. PubMed ID: 32339122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rehab@home: a tool for home-based motor function rehabilitation.
    Faria C; Silva J; Campilho A
    Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Physical Rehabilitation Exercises using Graph Convolutional Network with Self-supervised regularization.
    Du C; Graham S; Depp C; Nguyen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():281-285. PubMed ID: 34891291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures.
    Spilz A; Munz M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Validation of Vision-Based Exercise Biofeedback for Tele-Rehabilitation.
    Barzegar Khanghah A; Fernie G; Roshan Fekr A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Monteriu A; Romeo L; Verdini F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1436-1448. PubMed ID: 31217121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition and Repetition Counting for Local Muscular Endurance Exercises in Exercise-Based Rehabilitation: A Comparative Study Using Artificial Intelligence Models.
    Prabhu G; O'Connor NE; Moran K
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VestAid: A Tablet-Based Technology for Objective Exercise Monitoring in Vestibular Rehabilitation.
    Hovareshti P; Roeder S; Holt LS; Gao P; Xiao L; Zalkin C; Ou V; Tolani D; Klatt BN; Whitney SL
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous modeling of repetitive movement for rehabilitation exercise monitoring.
    Jatesiktat P; Lim GM; Kuah CWK; Anopas D; Ang WT
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):175. PubMed ID: 35780122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning App for Monitoring Physical Therapy at Home.
    Pereira B; Cunha B; Viana P; Lopes M; Melo ASC; Sousa ASP
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating photo-realistic training data to improve face recognition accuracy.
    Sáez Trigueros D; Meng L; Hartnett M
    Neural Netw; 2021 Feb; 134():86-94. PubMed ID: 33291019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV.
    Kuo NI; Garcia F; Sönnerborg A; Böhm M; Kaiser R; Zazzi M; ; Polizzotto M; Jorm L; Barbieri S
    J Biomed Inform; 2023 Aug; 144():104436. PubMed ID: 37451495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MirrARbilitation: A clinically-related gesture recognition interactive tool for an AR rehabilitation system.
    Da Gama AE; Chaves TM; Figueiredo LS; Baltar A; Meng M; Navab N; Teichrieb V; Fallavollita P
    Comput Methods Programs Biomed; 2016 Oct; 135():105-14. PubMed ID: 27586484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.