These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37925908)

  • 21. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
    Ar I; Akgul YS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1160-71. PubMed ID: 24860037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity rehabilitation exercises.
    Cóias AR; Lee MH; Bernardino A
    J Neuroeng Rehabil; 2022 Jul; 19(1):83. PubMed ID: 35902897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification-based Segmentation for Rehabilitation Exercise Monitoring.
    Lin JF; Joukov V; Kulić D
    J Rehabil Assist Technol Eng; 2018; 5():2055668318761523. PubMed ID: 31191926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer Vision Based on a Modular Neural Network for Automatic Assessment of Physical Therapy Rehabilitation Activities.
    Francisco JA; Rodrigues PS
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2174-2183. PubMed ID: 36459598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning.
    Arrowsmith C; Burns D; Mak T; Hardisty M; Whyne C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA-to-image multi-cancer synthesis using cascaded diffusion models.
    Carrillo-Perez F; Pizurica M; Zheng Y; Nandi TN; Madduri R; Shen J; Gevaert O
    bioRxiv; 2023 Jul; ():. PubMed ID: 36711711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation.
    Spasojević S; Ilić TV; Milanović S; Potkonjak V; Rodić A; Santos-Victor J
    Methods Inf Med; 2017 Mar; 56(2):95-111. PubMed ID: 27922660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power-law spectrum-based objective function to train a generative adversarial network with transfer learning for the synthetic breast CT image.
    Kim G; Baek J
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37722388
    [No Abstract]   [Full Text] [Related]  

  • 32. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture Estimation in Rehabilitation.
    Banik S; Garcia AM; Kiwull L; Berweck S; Knoll A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2063-2066. PubMed ID: 34891694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Context-Aware Application to Increase Elderly Users Compliance with Physical Rehabilitation Exercises at Home via Animatronic Biofeedback.
    Gamecho B; Silva H; Guerreiro J; Gardeazabal L; Abascal J
    J Med Syst; 2015 Nov; 39(11):135. PubMed ID: 26319272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AIoT-Enabled Rehabilitation Recognition System-Exemplified by Hybrid Lower-Limb Exercises.
    Lai YC; Kan YC; Lin YC; Lin HC
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation.
    Arac A
    Curr Neurol Neurosci Rep; 2020 Jun; 20(8):29. PubMed ID: 32542455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise.
    Aguirre A; Pinto MJ; Cifuentes CA; Perdomo O; Díaz CAR; Múnera M
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.