These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37926161)

  • 1. Experimental determination and QSAR analysis of the rate constants for SO
    Zhang Y; Lu K; Wang W; Guo J; Zou Y; Xu J; Li J; Pozdnyakov IP; Wu F
    Chemosphere; 2024 Jan; 346():140598. PubMed ID: 37926161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationship for the photooxidation of aromatic micro-pollutants induced by graphene oxide in water.
    Wang H; Zou Y; Wang W; Zhang Y; Mailhot G; Li J; Wu F; Luo L
    Chemosphere; 2023 Feb; 315():137781. PubMed ID: 36623604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.
    Sudhakaran S; Amy GL
    Water Res; 2013 Mar; 47(3):1111-22. PubMed ID: 23260175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H
    Su H; Yu C; Zhou Y; Gong L; Li Q; Alvarez PJJ; Long M
    Water Res; 2018 Sep; 140():354-363. PubMed ID: 29751317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid removal of organic pollutants by activation sulfite with ferrate.
    Zhang J; Zhu L; Shi Z; Gao Y
    Chemosphere; 2017 Nov; 186():576-579. PubMed ID: 28810226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR models for the removal of organic micropollutants in four different river water matrices.
    Sudhakaran S; Calvin J; Amy GL
    Chemosphere; 2012 Apr; 87(2):144-50. PubMed ID: 22245076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms.
    Tentscher PR; Lee M; von Gunten U
    Acc Chem Res; 2019 Mar; 52(3):605-614. PubMed ID: 30829468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.
    Xiao R; Ye T; Wei Z; Luo S; Yang Z; Spinney R
    Environ Sci Technol; 2015 Nov; 49(22):13394-402. PubMed ID: 26451961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the aqueous phase reactivity of hydroxyl radical towards diverse organic micropollutants: An aid to water decontamination processes.
    Gupta S; Basant N
    Chemosphere; 2017 Oct; 185():1164-1172. PubMed ID: 28764137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals.
    Hoang NT; Nguyen VT; Minh Tuan ND; Manh TD; Le PC; Van Tac D; Mwazighe FM
    Chemosphere; 2022 Jul; 298():134197. PubMed ID: 35276111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study.
    Cheng Z; Chen Q; Pontius FW; Gao X; Tan Y; Ma Y; Shen Z
    Chemosphere; 2020 Feb; 240():124928. PubMed ID: 31563101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical.
    Ye T; Wei Z; Spinney R; Tang CJ; Luo S; Xiao R; Dionysiou DD
    Water Res; 2017 Jun; 116():106-115. PubMed ID: 28324707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals.
    Lu Q; Liu Y; Li B; Feng L; Du Z; Zhang L
    Sci Total Environ; 2022 Jul; 828():153984. PubMed ID: 35202700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Free Electro-Activated Sulfite Process for As(III) Oxidation in Water Using Graphite Electrodes.
    Luo T; Peng Y; Chen L; Li J; Wu F; Zhou D
    Environ Sci Technol; 2020 Aug; 54(16):10261-10269. PubMed ID: 32806915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways.
    Li C; Zheng S; Li T; Chen J; Zhou J; Su L; Zhang YN; Crittenden JC; Zhu S; Zhao Y
    Water Res; 2019 Mar; 151():468-477. PubMed ID: 30640160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants.
    Ortiz EV; Bennardi DO; Bacelo DE; Fioressi SE; Duchowicz PR
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27366-27375. PubMed ID: 28975527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes.
    Jin X; Peldszus S; Huck PM
    Water Res; 2012 Dec; 46(19):6519-30. PubMed ID: 23079129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review.
    Ren M; Sun S; Wu Y; Shi Y; Wang ZJ; Cao H; Xie Y
    Chemosphere; 2022 Jun; 296():134071. PubMed ID: 35216974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.
    Salter-Blanc AJ; Bylaska EJ; Lyon MA; Ness SC; Tratnyek PG
    Environ Sci Technol; 2016 May; 50(10):5094-102. PubMed ID: 27074054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.