These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37926215)
1. Existence of solutions for stress-rate type strain-limiting viscoelasticity in Gevrey spaces. Bachmann L; De Anna F; Schlömerkemper A; Şengül Y Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2263):20220374. PubMed ID: 37926215 [TBL] [Abstract][Full Text] [Related]
2. Echo Chains as a Linear Mechanism: Norm Inflation, Modified Exponents and Asymptotics. Deng Y; Zillinger C Arch Ration Mech Anal; 2021; 242(1):643-700. PubMed ID: 34720116 [TBL] [Abstract][Full Text] [Related]
3. Forward and inverse problems for creep models in viscoelasticity. Itou H; Kovtunenko VA; Nakamura G Philos Trans A Math Phys Eng Sci; 2024 Aug; 382(2277):20230295. PubMed ID: 39005012 [TBL] [Abstract][Full Text] [Related]
4. A variational approach to frame-indifferent quasistatic viscoelasticity of rate type. Şengül Y Philos Trans A Math Phys Eng Sci; 2024 Aug; 382(2277):20230307. PubMed ID: 39005021 [TBL] [Abstract][Full Text] [Related]
5. Weak elastic energy of irregular curves. Mucci D; Saracco A Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2263):20220370. PubMed ID: 37926207 [TBL] [Abstract][Full Text] [Related]
6. Accretion-ablation mechanics. Pradhan SP; Yavari A Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2263):20220373. PubMed ID: 37926212 [TBL] [Abstract][Full Text] [Related]
7. Growth of Sobolev norms and loss of regularity in transport equations. Crippa G; Elgindi T; Iyer G; Mazzucato AL Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210024. PubMed ID: 35465718 [TBL] [Abstract][Full Text] [Related]
8. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries. Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear viscoelasticity of strain rate type: an overview. Şengül Y Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200715. PubMed ID: 33633495 [TBL] [Abstract][Full Text] [Related]
10. Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional Shen L J Inequal Appl; 2018; 2018(1):110. PubMed ID: 29773928 [TBL] [Abstract][Full Text] [Related]
11. On stable exponential cosmological solutions with two factor spaces in (1+ m + 2)-dimensional Einstein-Gauss-Bonnet model with Ivashchuk VD; Kobtsev AA Philos Trans A Math Phys Eng Sci; 2022 May; 380(2222):20210177. PubMed ID: 35282692 [TBL] [Abstract][Full Text] [Related]
12. Global solutions of aggregation equations and other flows with random diffusion. Rosenzweig M; Staffilani G Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725 [TBL] [Abstract][Full Text] [Related]
13. A proof of validity for multiphase Whitham modulation theory. Bridges TJ; Kostianko A; Schneider G Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200203. PubMed ID: 33362408 [TBL] [Abstract][Full Text] [Related]
14. An inverse coefficient problem of identifying the flexural rigidity in damped Euler-Bernoulli beam from measured boundary rotation. Hasanov A Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2236):20210358. PubMed ID: 36154468 [TBL] [Abstract][Full Text] [Related]
15. Fibrin fiber deformation mechanisms: insights from phenomenological modeling to molecular details. Filla N; Zhao Y; Wang X Biomech Model Mechanobiol; 2023 Jun; 22(3):851-869. PubMed ID: 36648698 [TBL] [Abstract][Full Text] [Related]
16. Bardos CW; Titi ES Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210073. PubMed ID: 35034497 [TBL] [Abstract][Full Text] [Related]
17. A Magneto-Viscoelasticity Problem with Aging. Carillo S; Giorgi C Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363401 [TBL] [Abstract][Full Text] [Related]
18. A certain counterpart in dissipative setting of the Noether theorem with no dissipation pseudo-potentials. Mariano PM Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2263):20220375. PubMed ID: 37926214 [TBL] [Abstract][Full Text] [Related]
19. On the existence of elastic minimizers for initially stressed materials. Riccobelli D; Agosti A; Ciarletta P Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180074. PubMed ID: 30879420 [TBL] [Abstract][Full Text] [Related]
20. Least energy sign-changing solutions for a class of nonlocal Kirchhoff-type problems. Cheng B Springerplus; 2016; 5(1):1256. PubMed ID: 27536539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]