These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37926252)

  • 21. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.
    Han W; Fang J; Guo D; Zhang Y
    New Phytol; 2005 Nov; 168(2):377-85. PubMed ID: 16219077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen and phosphorus stoichiometry of Schima superba under nitrogen deposition.
    Zhang R; Pan H; He B; Chen H; Zhou Z
    Sci Rep; 2018 Sep; 8(1):13669. PubMed ID: 30209316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.
    Yan B; Ji Z; Fan B; Wang X; He G; Shi L; Liu G
    New Phytol; 2016 Sep; 211(4):1232-40. PubMed ID: 27101947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaf nitrogen and phosphorus stoichiometry of the halophytes across China.
    Tong R; Ma C; Lou C; Yuan W; Zhu N; Wang GG; Wu T
    Front Plant Sci; 2023; 14():1276699. PubMed ID: 37860242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.
    Kerkhoff AJ; Fagan WF; Elser JJ; Enquist BJ
    Am Nat; 2006 Oct; 168(4):E103-22. PubMed ID: 17004214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.
    Zhang K; Su Y; Yang R
    J Plant Res; 2017 Jul; 130(4):699-708. PubMed ID: 28401322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterns of carbon, nitrogen, and phosphorus stoichiometry of three life-form desert plants and responses to soil and microbial biomass factors in a hyper-arid desert ecosystem.
    Gao Y; Zeng F
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43962-43974. PubMed ID: 36680725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaf nutrient resorption of two life-form tree species in urban gardens and their response to soil nutrient availability.
    Hu R; Liu T; Zhang Y; Zheng R; Guo J
    PeerJ; 2023; 11():e15738. PubMed ID: 37483974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergent nitrogen-phosphorus scaling relationships in different plant organs along an elevational gradient.
    Chen X; Wang M; Li M; Sun J; Lyu M; Zhong Q; Cheng D
    AoB Plants; 2020 Jun; 12(3):plaa021. PubMed ID: 32537118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global distributions of foliar nitrogen and phosphorus resorption in forest ecosystems.
    Huang X; Lu Z; Xu X; Wan F; Liao J; Wang J
    Sci Total Environ; 2023 May; 871():162075. PubMed ID: 36758701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allometric scaling of biomass with nitrogen and phosphorus above- and below-ground in herbaceous plants varies along water-salinity gradients.
    Liu AN; Zhang Y; Hou ZF; Hui Lü G
    AoB Plants; 2021 Aug; 13(4):plab030. PubMed ID: 34646433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species.
    Zhao Q; Guo J; Shu M; Wang P; Hu S
    Sci Total Environ; 2020 Jun; 723():138106. PubMed ID: 32222509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foliar phosphorus allocation and photosynthesis reveal plants' adaptative strategies to phosphorus limitation in tropical forests at different successional stages.
    Yu Q; Ni X; Cheng X; Ma S; Tian D; Zhu B; Zhu J; Ji C; Tang Z; Fang J
    Sci Total Environ; 2022 Nov; 846():157456. PubMed ID: 35863563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient.
    DiManno NM; Ostertag R
    Oecologia; 2016 Jan; 180(1):245-55. PubMed ID: 26404491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examination of the negative correlation between leaf δ
    Chen C; Wang G; Li J; Jia Y; Chen Z
    Sci Total Environ; 2023 Aug; 885():163843. PubMed ID: 37137362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Württemberg (SW Germany).
    Franzaring J; Holz I; Zipperle J; Fangmeier A
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):4-12. PubMed ID: 19455359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterns and controls of foliar nutrient stoichiometry and flexibility across United States forests.
    Dynarski KA; Soper FM; Reed SC; Wieder WR; Cleveland CC
    Ecology; 2023 Feb; 104(2):e3909. PubMed ID: 36326547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in wood nutrients along a tropical soil fertility gradient.
    Heineman KD; Turner BL; Dalling JW
    New Phytol; 2016 Jul; 211(2):440-54. PubMed ID: 26922861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient.
    Zhao N; Yu G; He N; Xia F; Wang Q; Wang R; Xu Z; Jia Y
    J Plant Res; 2016 Jul; 129(4):647-657. PubMed ID: 26943163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants.
    Tian D; Kattge J; Chen Y; Han W; Luo Y; He J; Hu H; Tang Z; Ma S; Yan Z; Lin Q; Schmid B; Fang J
    Ecology; 2019 Sep; 100(9):e02812. PubMed ID: 31291467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.