These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37926409)

  • 21. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.
    Zhu Y; Wang H; Li X; Hu C; Yang M; Qu J
    Water Res; 2014 Sep; 60():174-181. PubMed ID: 24859195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.
    Wang F; Gao B; Ma D; Yue Q; Li R; Wang Q
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22914-22923. PubMed ID: 27578089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in drinking water disinfection: successes and challenges.
    Ngwenya N; Ncube EJ; Parsons J
    Rev Environ Contam Toxicol; 2013; 222():111-70. PubMed ID: 22990947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perfluorooctanoic Acid (PFOA) Incorporated into Iron Particles Promoted the Formation of Disinfection Byproducts under Drinking Water Conditions.
    Zhuang Y; Li D; Shi B
    Environ Sci Technol; 2023 Mar; 57(12):4863-4869. PubMed ID: 36917752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review.
    Wang H; Hu C; Shi B
    J Environ Sci (China); 2021 Dec; 110():92-98. PubMed ID: 34593198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexavalent Chromium Release in Drinking Water Distribution Systems: New Insights into Zerovalent Chromium in Iron Corrosion Scales.
    Tan C; Avasarala S; Liu H
    Environ Sci Technol; 2020 Oct; 54(20):13036-13045. PubMed ID: 32996313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the ignored role of escaped algae in a pilot-scale DWDS: Disinfectant consumption, DBP yield and risk formation.
    Cen C; Zhang K; Zhang T; Wu J; Mao X
    Environ Pollut; 2023 Nov; 337():122599. PubMed ID: 37739259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response mechanisms of pipe wall biofilms in water supply networks under different disinfection strategy pressures and the effect of mediating halogenated acetonitrile formation.
    Zheng S; Lin T; Zhang X; Jiang F
    Chemosphere; 2023 Dec; 344():140382. PubMed ID: 37806328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of UV treatment on microbial control and DBPs formation in full-scale drinking water systems in northern China.
    Ao X; Chen Z; Li S; Li C; Lu Z; Sun W
    J Environ Sci (China); 2020 Jan; 87():398-410. PubMed ID: 31791513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.
    Wang H; Hu C; Hu X; Yang M; Qu J
    Water Res; 2012 Mar; 46(4):1070-8. PubMed ID: 22209261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes.
    Zheng S; Lin T; Chen H; Zhang X; Jiang F
    Sci Total Environ; 2023 Aug; 884():163813. PubMed ID: 37121323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples.
    Sanchís J; Redondo-Hasselerharm PE; Villanueva CM; Farré MJ
    Chemosphere; 2022 Sep; 303(Pt 2):135087. PubMed ID: 35623424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial community change and antibiotic resistance promotion after exposure to sulfadiazine and the role of UV/H
    Huo L; Zhao S; Shi B; Wang H; He S
    Chemosphere; 2021 Nov; 283():131214. PubMed ID: 34147982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review.
    Li RA; McDonald JA; Sathasivan A; Khan SJ
    Water Res; 2019 Apr; 153():335-348. PubMed ID: 30743084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing disinfectant residual dosage in engineered water systems to minimize the overall health risks of opportunistic pathogens and disinfection by-products.
    Zhang C; Lu J
    Sci Total Environ; 2021 May; 770():145356. PubMed ID: 33736415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Synergistic Control of Nitrogenous Disinfection By-products and Opportunistic Pathogens in Drinking Water by Iron-Modified Quartz Sand Filtration].
    Qi P; Hu C; Xing XC; Bi ZH; Li ZS
    Huan Jing Ke Xue; 2022 Feb; 43(2):887-895. PubMed ID: 35075862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems].
    Wang Y; Zhang XJ; Chen YQ; Lu PP; Chen C
    Huan Jing Ke Xue; 2009 Nov; 30(11):3293-9. PubMed ID: 20063743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution.
    Zhao Y; Yang YJ; Shao Y; Neal J; Zhang T
    Water Res; 2018 Sep; 141():32-45. PubMed ID: 29753975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.