These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 3792644)
1. In vitro assays for botulinum toxin and antitoxins. Shone C; Appleton N; Wilton-Smith P; Hambleton P; Modi N; Gatley S; Melling J Dev Biol Stand; 1986; 64():141-5. PubMed ID: 3792644 [TBL] [Abstract][Full Text] [Related]
2. Quality assurance of C. perfringens epsilon toxoid vaccines--ELISA versus mouse neutralisation test. Rosskopf-Streicher U; Volkers P; Noeske K; Werner E ALTEX; 2004; 21 Suppl 3():65-9. PubMed ID: 15057410 [TBL] [Abstract][Full Text] [Related]
3. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Sharma SK; Ferreira JL; Eblen BS; Whiting RC Appl Environ Microbiol; 2006 Feb; 72(2):1231-8. PubMed ID: 16461671 [TBL] [Abstract][Full Text] [Related]
4. Use of in vitro Vero cell assay and ELISA in the United States potency test of vaccines containing adsorbed diphtheria and tetanus toxoids. Gupta RK; Siber GR Dev Biol Stand; 1996; 86():207-15. PubMed ID: 8785950 [TBL] [Abstract][Full Text] [Related]
5. Detection of antibodies against botulinum toxins. Sesardic D; Jones RG; Leung T; Alsop T; Tierney R Mov Disord; 2004 Mar; 19 Suppl 8():S85-91. PubMed ID: 15027059 [TBL] [Abstract][Full Text] [Related]
6. Chemiluminescence immunosorbent assay (CLISA) and a possibility of the specific detection of soluble antigens of Clostridium botulinum type A. Ligieza J; Reiss J; Michalik M Arch Immunol Ther Exp (Warsz); 1994; 42(2):129-33. PubMed ID: 7503646 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a monoclonal antibody-based immunoassay for detecting type B Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system. Gibson AM; Modi NK; Roberts TA; Hambleton P; Melling J J Appl Bacteriol; 1988 Apr; 64(4):285-91. PubMed ID: 3049499 [TBL] [Abstract][Full Text] [Related]
8. [Identification of strain B 657 of Clostridium botulinum]. Giménez DF; Giménez JA Rev Argent Microbiol; 1983; 15(1):51-5. PubMed ID: 6400761 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a monoclonal antibody-based immunoassay for detecting type A Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system. Gibson AM; Modi NK; Roberts TA; Shone CC; Hambleton P; Melling J J Appl Bacteriol; 1987 Sep; 63(3):217-26. PubMed ID: 3323154 [TBL] [Abstract][Full Text] [Related]
10. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. Stanker LH; Merrill P; Scotcher MC; Cheng LW J Immunol Methods; 2008 Jul; 336(1):1-8. PubMed ID: 18452945 [TBL] [Abstract][Full Text] [Related]
11. Culture enrichment assists the diagnosis of cattle botulism by a monoclonal antibody based sandwich ELISA. Brooks CE; Clarke HJ; Finlay DA; McConnell W; Graham DA; Ball HJ Vet Microbiol; 2010 Jul; 144(1-2):226-30. PubMed ID: 20116183 [TBL] [Abstract][Full Text] [Related]
12. Monoclonal antibody for the detection of Clostridium botulinum type A toxin. Ferreira JL; Hamdy MK; Herd ZL; McCay SG; Zapatka FA Mol Cell Probes; 1987 Dec; 1(4):337-45. PubMed ID: 3453424 [TBL] [Abstract][Full Text] [Related]
13. Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Wictome M; Newton K; Jameson K; Hallis B; Dunnigan P; Mackay E; Clarke S; Taylor R; Gaze J; Foster K; Shone C Appl Environ Microbiol; 1999 Sep; 65(9):3787-92. PubMed ID: 10473376 [TBL] [Abstract][Full Text] [Related]
14. A review of WHO International Standards for botulinum antitoxins. Jones RG; Corbel MJ; Sesardic D Biologicals; 2006 Sep; 34(3):223-6. PubMed ID: 16490362 [TBL] [Abstract][Full Text] [Related]
15. Pasteurella multocida toxin type D serological assay as an alternative to the toxin neutralisation lethality test in mice. Finco-Kent DL; Galvin JE; Suiter BT; Huether MJ Biologicals; 2001 Mar; 29(1):7-10. PubMed ID: 11482887 [TBL] [Abstract][Full Text] [Related]
16. Short communication: Attempts to identify Clostridium botulinum toxin in milk from three experimentally intoxicated Holstein cows. Moeller RB; Puschner B; Walker RL; Rocke TE; Smith SR; Cullor JS; Ardans AA J Dairy Sci; 2009 Jun; 92(6):2529-33. PubMed ID: 19447984 [TBL] [Abstract][Full Text] [Related]
17. Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods. Kautter DA; Solomon HM J Assoc Off Anal Chem; 1977 May; 60(3):541-5. PubMed ID: 323214 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of an enzyme-linked immunosorbent assay (ELISA) kit for the detection of botulinum neurotoxins A, B, E, and F in selected food matrices. Singh A; Datta S; Sachdeva A; Maslanka S; Dykes J; Skinner G; Burr D; Whiting RC; Sharma SK Health Secur; 2015; 13(1):37-44. PubMed ID: 25812427 [TBL] [Abstract][Full Text] [Related]
19. Toxin occurrence time in relation to sensorial changes in meat cans contaminated with Clostridium botulinum type B endospores. Palec W Acta Microbiol Pol; 1996; 45(1):75-83. PubMed ID: 8795258 [TBL] [Abstract][Full Text] [Related]
20. An improved cooked meat medium for the detection of Clostridium botulinum. Quagliaro DA J Assoc Off Anal Chem; 1977 May; 60(3):563-9. PubMed ID: 323216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]