These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37926526)
1. Predicting pulmonary tuberculosis incidence in China using Baidu search index: an ARIMAX model approach. Yang J; Zhou J; Luo T; Xie Y; Wei Y; Mai H; Yang Y; Cui P; Ye L; Liang H; Huang J Environ Health Prev Med; 2023; 28():68. PubMed ID: 37926526 [TBL] [Abstract][Full Text] [Related]
2. Early Warning and Prediction of Scarlet Fever in China Using the Baidu Search Index and Autoregressive Integrated Moving Average With Explanatory Variable (ARIMAX) Model: Time Series Analysis. Luo T; Zhou J; Yang J; Xie Y; Wei Y; Mai H; Lu D; Yang Y; Cui P; Ye L; Liang H; Huang J J Med Internet Res; 2023 Oct; 25():e49400. PubMed ID: 37902815 [TBL] [Abstract][Full Text] [Related]
3. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Li ZQ; Pan HQ; Liu Q; Song H; Wang JM Infect Dis Poverty; 2020 Nov; 9(1):151. PubMed ID: 33148337 [TBL] [Abstract][Full Text] [Related]
4. Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China. Chen YP; Liu LF; Che Y; Huang J; Li GX; Sang GX; Xuan ZQ; He TF Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564780 [TBL] [Abstract][Full Text] [Related]
5. Using Baidu Search Engine to Monitor AIDS Epidemics Inform for Targeted intervention of HIV/AIDS in China. Li K; Liu M; Feng Y; Ning C; Ou W; Sun J; Wei W; Liang H; Shao Y Sci Rep; 2019 Jan; 9(1):320. PubMed ID: 30674890 [TBL] [Abstract][Full Text] [Related]
6. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Zhao C; Yang Y; Wu S; Wu W; Xue H; An K; Zhen Q Sci Rep; 2020 Apr; 10(1):5896. PubMed ID: 32246053 [TBL] [Abstract][Full Text] [Related]
7. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. Du Z; Xu L; Zhang W; Zhang D; Yu S; Hao Y BMJ Open; 2017 Oct; 7(10):e016263. PubMed ID: 28988169 [TBL] [Abstract][Full Text] [Related]
8. A potential tool for predicting epidemic trends and outbreaks of scrub typhus based on Internet search big data analysis in Yunnan Province, China. Wang Z; Zhang W; Lu N; Lv R; Wang J; Zhu C; Ai L; Mao Y; Tan W; Qi Y Front Public Health; 2022; 10():1004462. PubMed ID: 36530696 [TBL] [Abstract][Full Text] [Related]
9. Predicting the Number of Reported Pulmonary Tuberculosis in Guiyang, China, Based on Time Series Analysis Techniques. Yang SX; Xu HF; Mao YJ; Liang ZH; Pan CL Comput Math Methods Med; 2022; 2022():7828131. PubMed ID: 36349145 [TBL] [Abstract][Full Text] [Related]
10. Using the Baidu index to predict trends in the incidence of tuberculosis in Jiangsu Province, China. Wang Y; Zhou H; Zheng L; Li M; Hu B Front Public Health; 2023; 11():1203628. PubMed ID: 37533520 [TBL] [Abstract][Full Text] [Related]
11. Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China. Fang X; Liu W; Ai J; He M; Wu Y; Shi Y; Shen W; Bao C BMC Infect Dis; 2020 Mar; 20(1):222. PubMed ID: 32171261 [TBL] [Abstract][Full Text] [Related]
12. Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China. Wu Z; Chen Z; Long S; Wu A; Wang H BMC Infect Dis; 2022 Jul; 22(1):641. PubMed ID: 35871653 [TBL] [Abstract][Full Text] [Related]
13. Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model. Zhou W; Huang D; Liang Q; Huang T; Wang X; Pei H; Chen S; Liu L; Wei Y; Qin L; Xie Y BMC Infect Dis; 2024 Sep; 24(1):1006. PubMed ID: 39300391 [TBL] [Abstract][Full Text] [Related]
14. Interruption time series analysis using autoregressive integrated moving average model: evaluating the impact of COVID-19 on the epidemic trend of gonorrhea in China. Li Y; Liu X; Li X; Xue C; Zhang B; Wang Y BMC Public Health; 2023 Oct; 23(1):2073. PubMed ID: 37872621 [TBL] [Abstract][Full Text] [Related]
15. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636 [TBL] [Abstract][Full Text] [Related]
16. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis. Zhai M; Li W; Tie P; Wang X; Xie T; Ren H; Zhang Z; Song W; Quan D; Li M; Chen L; Qiu L BMC Infect Dis; 2021 Mar; 21(1):280. PubMed ID: 33740904 [TBL] [Abstract][Full Text] [Related]
17. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
18. Time series analysis of hemorrhagic fever with renal syndrome in mainland China by using an XGBoost forecasting model. Lv CX; An SY; Qiao BJ; Wu W BMC Infect Dis; 2021 Aug; 21(1):839. PubMed ID: 34412581 [TBL] [Abstract][Full Text] [Related]
19. [Application of ARIMA model in predicting the incidence of tuberculosis in China from 2018 to 2019]. Yan CQ; Wang RB; Liu HC; Jiang Y; Li MC; Yin SP; Xiao TY; Wan KL; Rang WQ Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Jun; 40(6):633-637. PubMed ID: 31238610 [No Abstract] [Full Text] [Related]
20. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]