These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37926604)

  • 81. Fluorometric measurement of the intracellular free Ca(2+)-concentration in the ciliate Didinium nasutum using Fura-2.
    Pernberg J; Machemer H
    Cell Calcium; 1995 Dec; 18(6):484-94. PubMed ID: 8746947
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Kinetics of light-dependent Ca fluxes across the plasma membrane of rod outer segments. A dynamic model of the regulation of the cytoplasmic Ca concentration.
    Miller DL; Korenbrot JI
    J Gen Physiol; 1987 Sep; 90(3):397-425. PubMed ID: 3116153
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Role of the cardiac Na(+)/H(+)exchanger in [Ca(2+)](i)and [Na(+)](i)handling during intracellular acidosis. Effect of cariporide (Hoe 642).
    Salameh A; Dhein S; Beuckelmann DJ
    Pharmacol Res; 2002 Jan; 45(1):35-41. PubMed ID: 11820859
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Blocking effect of La3+ ions on transmembrane ionic current evoked by intracellular cyclic AMP injection in identified Helix pomatia neurons.
    Belan PV; Osipenko O
    Neurosci Lett; 1991 Mar; 124(1):137-9. PubMed ID: 1649979
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCa1 Ca(2+)-dependent K(+) channels.
    Schilling T; Repp H; Richter H; Koschinski A; Heinemann U; Dreyer F; Eder C
    Neuroscience; 2002; 109(4):827-35. PubMed ID: 11927165
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A role for depolarisation induced calcium entry on the Na-Ca exchange in triggering intracellular calcium release and contraction in rat ventricular myocytes.
    Levi AJ; Brooksby P; Hancox JC
    Cardiovasc Res; 1993 Sep; 27(9):1677-90. PubMed ID: 8287448
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biofield Science and Healing: History, Terminology, and Concepts.
    Rubik B; Muehsam D; Hammerschlag R; Jain S
    Glob Adv Health Med; 2015 Nov; 4(Suppl):8-14. PubMed ID: 26665037
    [TBL] [Abstract][Full Text] [Related]  

  • 89. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Voltage- and calcium-dependent inactivation of calcium channels in Lymnaea neurons.
    Gera S; Byerly L
    J Gen Physiol; 1999 Oct; 114(4):535-50. PubMed ID: 10498672
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Voltage-clamp analysis of a calcium-mediated potassium conductance in cockroach (Periplaneta americana) central neurones.
    Thomas MV
    J Physiol; 1984 May; 350():159-78. PubMed ID: 6086893
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.
    Hille B; Woodhull AM; Shapiro BI
    Philos Trans R Soc Lond B Biol Sci; 1975 Jun; 270(908):301-18. PubMed ID: 238230
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Quantum dots modulate intracellular Ca
    Yin H; Fontana JM; Solandt J; Jussi JI; Xu H; Brismar H; Fu Y
    Int J Nanomedicine; 2017; 12():2781-2792. PubMed ID: 28435258
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Calcium and voltage dependent inactivation of sodium and calcium currents limits calcium influx in Helisoma neurons.
    Torreano PJ; Cohan CS
    J Neurobiol; 2003 Feb; 54(3):439-56. PubMed ID: 12532396
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effects of elevating [Na]i on membrane currents of canine ventricular myocytes: role of intracellular Ca ions.
    Saxena NC; Fan JS; Tseng GN
    Cardiovasc Res; 1997 Mar; 33(3):548-60. PubMed ID: 9093525
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Aspects of calcium-activated chloride currents: a neuronal perspective.
    Scott RH; Sutton KG; Griffin A; Stapleton SR; Currie KP
    Pharmacol Ther; 1995 Jun; 66(3):535-65. PubMed ID: 7494858
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium.
    Verheugen JA; Vijverberg HP; Oortgiesen M; Cahalan MD
    J Gen Physiol; 1995 Jun; 105(6):765-94. PubMed ID: 7561743
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Na-Ca exchange: stoichiometry and electrogenicity.
    Eisner DA; Lederer WJ
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C189-202. PubMed ID: 2579566
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Probing pH-Dependent Dehydration Dynamics of Mg and Ca Cations in Aqueous Solutions with Multi-Level Quantum Mechanics/Molecular Dynamics Simulations.
    Boyn JN; Carter EA
    J Am Chem Soc; 2023 Sep; 145(37):20462-20472. PubMed ID: 37672633
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Calcium ion levels in resting and depolarized goldfish retinal ganglion cell somata and growth cones.
    Ishida AT; Bindokas VP; Nuccitelli R
    J Neurophysiol; 1991 Apr; 65(4):968-79. PubMed ID: 1711108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.