These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37926693)

  • 21. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy.
    Yang Z; Zhang Z; Sun Y; Lei Z; Wang D; Ma H; Tang BZ
    Biomaterials; 2021 Aug; 275():120934. PubMed ID: 34217019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photophysical properties and singlet oxygen generation of
    Zhao F; Zhan X; Lai SH; Zhang L; Liu HY
    RSC Adv; 2019 Apr; 9(22):12626-12634. PubMed ID: 35515858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel BODIPY-based photosensitizer with pH-active singlet oxygen generation for photodynamic therapy in lysosomes.
    Wang C; Qian Y
    Org Biomol Chem; 2019 Aug; 17(34):8001-8007. PubMed ID: 31410437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy.
    Singh R; Chen DG; Wang CH; Wu CC; Hsu CH; Wu CH; Lai TY; Chou PT; Chen CT
    J Mater Chem B; 2022 Aug; 10(32):6228-6236. PubMed ID: 35920213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. External heavy-atomic construction of photosensitizer nanoparticles for enhanced in vitro photodynamic therapy of cancer.
    Zhou L; Wei S; Ge X; Zhou J; Yu B; Shen J
    J Phys Chem B; 2012 Oct; 116(42):12744-9. PubMed ID: 22984941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BODIPY and 2,3-Dihydrophthalazine-1,4-Dione Conjugates As Heavy Atom-Free Chemiluminogenic Photosensitizers.
    Degirmenci A; Sonkaya Ö; Soylukan C; Karaduman T; Algi F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5090-5098. PubMed ID: 35007057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Assembly Induced Photosensitization of Long-Tailed Heavy-Atom-Free BODIPY Derivatives for Photodynamic Therapy.
    Li J; Du X; Zhou X; Yoon J
    Adv Healthc Mater; 2023 Oct; 12(27):e2301022. PubMed ID: 37209386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.
    Wang Z; Hong X; Zong S; Tang C; Cui Y; Zheng Q
    Sci Rep; 2015 Jul; 5():12602. PubMed ID: 26211417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bridging D-A type photosensitizers with the azo group to boost intersystem crossing for efficient photodynamic therapy.
    Hao B; Wang J; Wang C; Xue K; Xiao M; Lv S; Zhu C
    Chem Sci; 2022 Apr; 13(14):4139-4149. PubMed ID: 35440990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer.
    Filatov MA
    Org Biomol Chem; 2019 Dec; 18(1):10-27. PubMed ID: 31750502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bodipy Derivatives as Triplet Photosensitizers and the Related Intersystem Crossing Mechanisms.
    Chen K; Dong Y; Zhao X; Imran M; Tang G; Zhao J; Liu Q
    Front Chem; 2019; 7():821. PubMed ID: 31921760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy.
    Pham TC; Nguyen VN; Choi Y; Lee S; Yoon J
    Chem Rev; 2021 Nov; 121(21):13454-13619. PubMed ID: 34582186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical insight into joint photodynamic action of a gold(i) complex and a BODIPY chromophore for singlet oxygen generation.
    De Simone BC; Mazzone G; Sang-Aroon W; Marino T; Russo N; Sicilia E
    Phys Chem Chem Phys; 2019 Feb; 21(7):3446-3452. PubMed ID: 30204180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iodine substituted phosphorus corrole complexes as possible photosensitizers in photodynamic therapy: Insights from theory.
    Alberto ME; De Simone BC; Liuzzi S; Marino T; Russo N; Toscano M
    J Comput Chem; 2020 May; 41(14):1395-1401. PubMed ID: 32104925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy.
    Cao J; Chi J; Xia J; Zhang Y; Han S; Sun Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25720-25729. PubMed ID: 31246000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advancements in boron difluoride formazanate dyes for biological imaging.
    Yang S; Lu K; Xiao H
    Curr Opin Chem Biol; 2024 Jul; 81():102473. PubMed ID: 38986292
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Yang J; Gai L; Chen X; Liu Y; Wu S; Feng J; Sui X; Lu H
    J Org Chem; 2022 Jun; 87(12):7712-7719. PubMed ID: 35675709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy.
    Wang X; Yin X; Lai XY; Liu YT
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():229-235. PubMed ID: 29870907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers.
    Díaz-Norambuena C; Avellanal-Zaballa E; Prieto-Castañeda A; Bañuelos J; de la Moya S; Agarrabeitia AR; Ortiz MJ
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy.
    Miao X; Hu W; He T; Tao H; Wang Q; Chen R; Jin L; Zhao H; Lu X; Fan Q; Huang W
    Chem Sci; 2019 Mar; 10(10):3096-3102. PubMed ID: 30996892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.