BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37926737)

  • 21. Natural language processing for the assessment of cardiovascular disease comorbidities: The cardio-Canary comorbidity project.
    Berman AN; Biery DW; Ginder C; Hulme OL; Marcusa D; Leiva O; Wu WY; Cardin N; Hainer J; Bhatt DL; Di Carli MF; Turchin A; Blankstein R
    Clin Cardiol; 2021 Sep; 44(9):1296-1304. PubMed ID: 34347314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Knee Arthroplasty.
    Sagheb E; Ramazanian T; Tafti AP; Fu S; Kremers WK; Berry DJ; Lewallen DG; Sohn S; Maradit Kremers H
    J Arthroplasty; 2021 Mar; 36(3):922-926. PubMed ID: 33051119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
    Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of deep learning methods for de-identification of clinical notes in cross-institute settings.
    Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes.
    Xie K; Gallagher RS; Shinohara RT; Xie SX; Hill CE; Conrad EC; Davis KA; Roth D; Litt B; Ellis CA
    Epilepsia; 2023 Jul; 64(7):1900-1909. PubMed ID: 37114472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Note Bloat" impacts deep learning-based NLP models for clinical prediction tasks.
    Liu J; Capurro D; Nguyen A; Verspoor K
    J Biomed Inform; 2022 Sep; 133():104149. PubMed ID: 35878821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A natural language processing and deep learning approach to identify child abuse from pediatric electronic medical records.
    Annapragada AV; Donaruma-Kwoh MM; Annapragada AV; Starosolski ZA
    PLoS One; 2021; 16(2):e0247404. PubMed ID: 33635890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of ACM and CLAMP for Entity Extraction in Clinical Notes.
    Shah-Mohammadi F; Cui W; Finkelstein J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1989-1992. PubMed ID: 34891677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large Scale Semi-Automated Labeling of Routine Free-Text Clinical Records for Deep Learning.
    Trivedi HM; Panahiazar M; Liang A; Lituiev D; Chang P; Sohn JH; Chen YY; Franc BL; Joe B; Hadley D
    J Digit Imaging; 2019 Feb; 32(1):30-37. PubMed ID: 30128778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of asthma control factor in clinical notes using a hybrid deep learning model.
    Agnikula Kshatriya BS; Sagheb E; Wi CI; Yoon J; Seol HY; Juhn Y; Sohn S
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 7):272. PubMed ID: 34753481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identify diabetic retinopathy-related clinical concepts and their attributes using transformer-based natural language processing methods.
    Yu Z; Yang X; Sweeting GL; Ma Y; Stolte SE; Fang R; Wu Y
    BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):255. PubMed ID: 36167551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Natural Language Processing to Identify Symptom Documentation in Clinical Notes for Patients With Heart Failure Undergoing Cardiac Resynchronization Therapy.
    Leiter RE; Santus E; Jin Z; Lee KC; Yusufov M; Chien I; Ramaswamy A; Moseley ET; Qian Y; Schrag D; Lindvall C
    J Pain Symptom Manage; 2020 Nov; 60(5):948-958.e3. PubMed ID: 32585181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural Language Processing in Nephrology.
    Van Vleck TT; Farrell D; Chan L
    Adv Chronic Kidney Dis; 2022 Sep; 29(5):465-471. PubMed ID: 36253030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can natural language processing models extract and classify instances of interpersonal violence in mental healthcare electronic records: an applied evaluative study.
    Botelle R; Bhavsar V; Kadra-Scalzo G; Mascio A; Williams MV; Roberts A; Velupillai S; Stewart R
    BMJ Open; 2022 Feb; 12(2):e052911. PubMed ID: 35172999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural language processing for automated surveillance of intraoperative neuromonitoring in spine surgery.
    Agaronnik ND; Kwok A; Schoenfeld AJ; Lindvall C
    J Clin Neurosci; 2022 Mar; 97():121-126. PubMed ID: 35093791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and testing of a multi-lingual Natural Language Processing-based deep learning system in 10 languages for COVID-19 pandemic crisis: A multi-center study.
    Yang LWY; Ng WY; Lei X; Tan SCY; Wang Z; Yan M; Pargi MK; Zhang X; Lim JS; Gunasekeran DV; Tan FCP; Lee CE; Yeo KK; Tan HK; Ho HSS; Tan BWB; Wong TY; Kwek KYC; Goh RSM; Liu Y; Ting DSW
    Front Public Health; 2023; 11():1063466. PubMed ID: 36860378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.