BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37926807)

  • 1. Adjustable prosthetic sockets: a systematic review of industrial and research design characteristics and their justifications.
    Baldock M; Pickard N; Prince M; Kirkwood S; Chadwell A; Howard D; Dickinson A; Kenney L; Gill N; Curtin S
    J Neuroeng Rehabil; 2023 Nov; 20(1):147. PubMed ID: 37926807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustable-Volume Prosthetic Sockets: Market Overview and Value Propositions.
    Klenow TD; Schulz J
    Can Prosthet Orthot J; 2021; 4(2):35208. PubMed ID: 37615005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustable sockets may improve residual limb fluid volume retention in transtibial prosthesis users.
    Brzostowski JT; Larsen BG; Youngblood RT; Ciol MA; Hafner BJ; Gurrey CJ; McLean JB; Allyn KJ; Sanders JE
    Prosthet Orthot Int; 2019 Jun; 43(3):250-256. PubMed ID: 30628522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of lower limb prosthetic sockets: a review.
    Wang M; Nong Q; Liu Y; Yu H
    Expert Rev Med Devices; 2022 Jan; 19(1):63-73. PubMed ID: 34932435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the new, patient-adjustable socket system Varos in the early phase of prosthetic rehabilitation: a pilot study.
    Nia A; Toetschinger G; Kubinec T; Domayer S
    Eur J Phys Rehabil Med; 2022 Jun; 58(3):462-469. PubMed ID: 35148042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research.
    Al-Fakih EA; Abu Osman NA; Mahmad Adikan FR
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Custom Interface Pressure Measurement System to Improve Fitting of Transtibial Prosthetic Check Sockets.
    Armitage L; Cho K; Sariyildiz E; Buller A; O'Brien S; Kark L
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic review of effects of current transtibial prosthetic socket designs-Part 1: Qualitative outcomes.
    Safari MR; Meier MR
    J Rehabil Res Dev; 2015; 52(5):491-508. PubMed ID: 26436666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of transhumeral socket designs utilizing patient assessment and in vivo skeletal and socket motion tracking: a case study.
    Resnik L; Patel T; Cooney SG; Crisco JJ; Fantini C
    Disabil Rehabil Assist Technol; 2016; 11(5):423-32. PubMed ID: 25425411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the measurement of prosthetic socket interface mechanics: a review of technology, techniques, and a 20-year update.
    Young PR; Hebert JS; Marasco PD; Carey JP; Schofield JS
    Expert Rev Med Devices; 2023; 20(9):729-739. PubMed ID: 37537898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of interface pressures in transfemoral prosthetic sockets.
    Paternò L; Truppa L; Ibrahimi M; Rosini E; Gruppioni E; Ricotti L; Menciassi A
    Prosthet Orthot Int; 2024 Apr; 48(2):176-183. PubMed ID: 37379468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and application of an adjustable myoelectric transhumeral prosthetic socket.
    Schofield JS; Schoepp KR; Stobbe M; Marasco PD; Hebert JS
    Prosthet Orthot Int; 2019 Oct; 43(5):564-567. PubMed ID: 30922181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of a volume-adjustable compression chamber for transradial prosthetic interface.
    Sang Y; Li X; Luo Y
    Proc Inst Mech Eng H; 2016 Jul; 230(7):650-60. PubMed ID: 27146289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive prosthetic socket design: part 2-generating person-specific candidate designs using multi-objective genetic algorithms.
    Steer JW; Grudniewski PA; Browne M; Worsley PR; Sobey AJ; Dickinson AS
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1347-1360. PubMed ID: 31741116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Pressure System to Compare the Functional Performance of Prosthetic Sockets during the Gait in People with Trans-Tibial Amputation.
    Ibarra Aguila S; Sánchez GJ; Sauvain EE; Alemon B; Fuentes-Aguilar RQ; Huegel JC
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33317006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Prospective Assessment of an Adjustable, Immediate Fit, Subischial Transfemoral Prosthesis.
    Dillingham TR; Kenia JL; Shofer FS; Marschalek JS
    Arch Rehabil Res Clin Transl; 2022 Sep; 4(3):100200. PubMed ID: 36123976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuating residual limb volume accommodated with an adjustable, modular socket design: A novel case report.
    Mitton K; Kulkarni J; Dunn KW; Ung AH
    Prosthet Orthot Int; 2017 Oct; 41(5):527-531. PubMed ID: 27888261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing in prosthetics: Method for managing rapid limb volume change.
    Nickel E; Barrons K; Hand B; Cataldo A; Hansen A
    Prosthet Orthot Int; 2020 Oct; 44(5):355-358. PubMed ID: 32580681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation: Part 2 Description and Preliminary evaluation.
    Fatone S; Caldwell R
    Prosthet Orthot Int; 2017 Jun; 41(3):246-250. PubMed ID: 28132589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, low-cost transradial socket fabrication method using mass-producible components and expanding rigid foam.
    Miller LA; Pickerill T; Kuiken TA
    Prosthet Orthot Int; 2021 Feb; 45(1):89-93. PubMed ID: 33834750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.