These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37927084)

  • 21. Recent trends of 3D printing based on starch-hydrocolloid in food, biomedicine and environment.
    Liu W; Chen L; McClements DJ; Peng X; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(25):8948-8962. PubMed ID: 37129300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a 3D Printer for the Manufacture of Functional Food Protein Gels.
    Portanguen S; Tournayre P; Gibert P; Leonardi S; Astruc T; Mirade PS
    Foods; 2022 Feb; 11(3):. PubMed ID: 35159608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges.
    Seoane-Viaño I; Januskaite P; Alvarez-Lorenzo C; Basit AW; Goyanes A
    J Control Release; 2021 Apr; 332():367-389. PubMed ID: 33652114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams.
    Yoha KS; Moses JA
    Foods; 2023 Jan; 12(1):. PubMed ID: 36613427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals.
    Serrano DR; Kara A; Yuste I; Luciano FC; Ongoren B; Anaya BJ; Molina G; Diez L; Ramirez BI; Ramirez IO; Sánchez-Guirales SA; Fernández-García R; Bautista L; Ruiz HK; Lalatsa A
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review.
    Pérez B; Nykvist H; Brøgger AF; Larsen MB; Falkeborg MF
    Food Chem; 2019 Jul; 287():249-257. PubMed ID: 30857696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Starch as edible ink in 3D printing for food applications: a review.
    Chen Y; McClements DJ; Peng X; Chen L; Xu Z; Meng M; Zhou X; Zhao J; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(2):456-471. PubMed ID: 35997260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization.
    Demircan E; Aydar EF; Mertdinc Mertdinç Z; Kasapoglu Kasapoğlu KN; Ozcelik Özçelik B
    Food Res Int; 2023 Nov; 173(Pt 1):113259. PubMed ID: 37803572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printing of cultured meat products.
    K Handral H; Hua Tay S; Wan Chan W; Choudhury D
    Crit Rev Food Sci Nutr; 2022; 62(1):272-281. PubMed ID: 32951433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Waste to wonder to explore possibilities with recycled materials in 3D printing.
    Olawumi MA; Oladapo BI; Ikumapayi OM; Akinyoola JO
    Sci Total Environ; 2023 Dec; 905():167109. PubMed ID: 37717760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures.
    Vrana NE; Gupta S; Mitra K; Rizvanov AA; Solovyeva VV; Antmen E; Salehi M; Ehterami A; Pourchet L; Barthes J; Marquette CA; von Unge M; Wang CY; Lai PL; Bit A
    Cell Tissue Bank; 2022 Sep; 23(3):417-440. PubMed ID: 35000046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review.
    Teng X; Li C; Mujumdar AS; Zhang M
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing: Principles and pharmaceutical applications of selective laser sintering.
    Awad A; Fina F; Goyanes A; Gaisford S; Basit AW
    Int J Pharm; 2020 Aug; 586():119594. PubMed ID: 32622811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation.
    Fu Z; Angeline V; Sun W
    Int J Bioprint; 2021; 7(4):434. PubMed ID: 34805600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives.
    Sharma R; Chandra Nath P; Kumar Hazarika T; Ojha A; Kumar Nayak P; Sridhar K
    Food Chem; 2024 Jan; 432():137196. PubMed ID: 37659329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Printing Technologies for Drug Delivery Applications: Processes, Materials, and Effects.
    Mancilla-De-la-Cruz J; Rodriguez-Salvador M; An J; Chua CK
    Int J Bioprint; 2022; 8(4):622. PubMed ID: 36404786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in functional 3D printing of foods: a review of functions of ingredients and internal structures.
    Zhao L; Zhang M; Chitrakar B; Adhikari B
    Crit Rev Food Sci Nutr; 2021; 61(21):3489-3503. PubMed ID: 32720517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binder-Jet 3D Printing of Indomethacin-laden Pharmaceutical Dosage Forms.
    Chang SY; Li SW; Kowsari K; Shetty A; Sorrells L; Sen K; Nagapudi K; Chaudhuri B; Ma AWK
    J Pharm Sci; 2020 Oct; 109(10):3054-3063. PubMed ID: 32628950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.
    Infanger S; Haemmerli A; Iliev S; Baier A; Stoyanov E; Quodbach J
    Int J Pharm; 2019 Jan; 555():198-206. PubMed ID: 30458260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.