These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37928345)

  • 1. Multi-shelled ECIF: improved extended connectivity interaction features for accurate binding affinity prediction.
    Shiota K; Akutsu T
    Bioinform Adv; 2023; 3(1):vbad155. PubMed ID: 37928345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction.
    Rana MM; Nguyen DD
    Comput Biol Med; 2023 Sep; 164():107250. PubMed ID: 37515872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple spatial extension to the extended connectivity interaction features for binding affinity prediction.
    Orhobor OI; Rehim AA; Lou H; Ni H; King RD
    R Soc Open Sci; 2022 May; 9(5):211745. PubMed ID: 35573039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GB-score: Minimally designed machine learning scoring function based on distance-weighted interatomic contact features.
    Rayka M; Firouzi R
    Mol Inform; 2023 Mar; 42(3):e2200135. PubMed ID: 36722733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance plus attention for binding affinity prediction.
    Rahman J; Newton MAH; Ali ME; Sattar A
    J Cheminform; 2024 May; 16(1):52. PubMed ID: 38735985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction.
    Wang K; Zhou R; Tang J; Li M
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37225408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of tissue eosinophilia. III. In vitro production of eosinophil-directed chemotactic inhibitory factor by T lymphocytes of complete Freund's adjuvant-treated guinea-pigs.
    Tashiro K; Sakata K; Hirashima M; Hayashi H
    Immunology; 1985 May; 55(1):115-24. PubMed ID: 3873403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction.
    Zhu Y; Zhao L; Wen N; Wang J; Wang C
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37688568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of tissue eosinophilia. IV. Purification and properties of eosinophil-directed chemotactic inhibitory factors from complete Freund's adjuvant-treated guinea pigs.
    Tashiro K; Sakata K; Hirashima M; Hayashi H
    Cell Immunol; 1986 Apr; 98(2):245-56. PubMed ID: 3489546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks.
    Yan Z; Wang J
    J Comput Aided Mol Des; 2016 Mar; 30(3):219-27. PubMed ID: 26879323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of tissue eosinophilia. V. Induction of lymphocyte-derived eosinophil chemotactic inhibitory factor production by a macrophage product from complete Freund's adjuvant-treated guinea pigs.
    Tashiro K; Sakata K; Hirashima M; Hayashi H
    Cell Immunol; 1987 Jan; 104(1):1-11. PubMed ID: 3802211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Assessment of Scoring Functions: The CASF-2016 Update.
    Su M; Yang Q; Du Y; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2019 Feb; 59(2):895-913. PubMed ID: 30481020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-ligand binding affinity prediction exploiting sequence constituent homology.
    Abdel-Rehim A; Orhobor O; Hang L; Ni H; King RD
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37572302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving deep learning-based protein distance prediction in CASP14.
    Guo Z; Wu T; Liu J; Hou J; Cheng J
    Bioinformatics; 2021 Oct; 37(19):3190-3196. PubMed ID: 33961009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.