These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37928800)
1. Nano/microfluidic device for high-throughput passive trapping of nanoparticles. Wells T; Schmidt H; Hawkins A Biomicrofluidics; 2023 Dec; 17(6):064101. PubMed ID: 37928800 [TBL] [Abstract][Full Text] [Related]
2. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
3. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells. Lawrenz A; Nason F; Cooper-White JJ Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021 [TBL] [Abstract][Full Text] [Related]
4. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles. Pope BL; Zhang M; Jo S; Dragnea B; Jacobson SC Anal Chem; 2024 Jul; 96(29):11845-11852. PubMed ID: 38976499 [TBL] [Abstract][Full Text] [Related]
5. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
6. A high-efficiency microfluidic device for size-selective trapping and sorting. Kim J; Erath J; Rodriguez A; Yang C Lab Chip; 2014 Jul; 14(14):2480-90. PubMed ID: 24850190 [TBL] [Abstract][Full Text] [Related]
7. Experimental and theoretical study on the microparticle trapping and release in a deformable nano-sieve channel. Chen X; Falzon L; Zhang J; Zhang X; Wang RQ; Du K Nanotechnology; 2020 Jan; 31(5):05LT01. PubMed ID: 31100734 [TBL] [Abstract][Full Text] [Related]
8. Trapping DNA with a high throughput microfluidic device. Montes RJ; Butler JE; Ladd AJC Electrophoresis; 2019 Feb; 40(3):437-446. PubMed ID: 30229964 [TBL] [Abstract][Full Text] [Related]
9. Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Hamblin MN; Xuan J; Maynes D; Tolley HD; Belnap DM; Woolley AT; Lee ML; Hawkins AR Lab Chip; 2010 Jan; 10(2):173-8. PubMed ID: 20066244 [TBL] [Abstract][Full Text] [Related]
11. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration. Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208 [TBL] [Abstract][Full Text] [Related]
12. High-Throughput Cell Trapping in the Dentate Spiral Microfluidic Channel. Lu J; Dai B; Wang K; Long Y; Yang Z; Chen J; Huang S; Zheng L; Fu Y; Wan W; Zhuang S; Guan Y; Zhang D Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803303 [TBL] [Abstract][Full Text] [Related]
13. Numerical Study of Enhancement of Positive Dielectrophoresis Particle Trapping in Electrode-Multilayered Microfluidic Device. Sato N; Yao J; Kawashima D; Takei M IEEE Trans Biomed Eng; 2019 Oct; 66(10):2936-2944. PubMed ID: 30762523 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic sorting with a moving array of optical traps. Dasgupta R; Ahlawat S; Gupta PK Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110 [TBL] [Abstract][Full Text] [Related]
15. Trapping of microparticles in the near field of an ultrasonic transducer. Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379 [TBL] [Abstract][Full Text] [Related]
16. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Song Y; Yang J; Pan X; Li D Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles. Yang D; Ai Y Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354 [TBL] [Abstract][Full Text] [Related]
18. Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles. Gifford SC; Spillane AM; Vignes SM; Shevkoplyas SS Lab Chip; 2014 Dec; 14(23):4496-505. PubMed ID: 25254358 [TBL] [Abstract][Full Text] [Related]
19. A new microfluidic device design for a defined positioning of neurons Walczuch K; Renze P; Ingensiep C; Degen R; Bui TP; Schnakenberg U; Bräunig P; Bui-Göbbels K Biomicrofluidics; 2017 Jul; 11(4):044103. PubMed ID: 28794814 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic-based hydrodynamic trap: design and implementation. Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]