BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37928963)

  • 1. Multiphysics Modeling of Plasmon-Enhanced All-Optical Helicity-Dependent Switching.
    Cheng F; Wang C; Xu Y; Ma W; Liu Y
    ACS Photonics; 2023 May; 10(5):1259-1267. PubMed ID: 37928963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic dichroism and all-optical magnetization switching in nanophotonic structures with GdFeCo.
    Zimnyakova PE; Ignatyeva DO; Kalish AN; Han X; Belotelov VI
    Opt Lett; 2022 Dec; 47(23):6049-6052. PubMed ID: 37219169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal deformation of gold nanostructures and its influence on surface plasmon resonance sensing.
    Kim HT; Pathak M; Rajasekaran K; Gupta AK; Yu M
    Nanoscale Adv; 2020 Mar; 2(3):1128-1137. PubMed ID: 36133066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures.
    Chiba H; Kodama K; Okada K; Ichikawa Y; Motosuke M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress of gold nanostructures and their applications.
    Dahan KA; Li Y; Xu J; Kan C
    Phys Chem Chem Phys; 2023 Jul; 25(28):18545-18576. PubMed ID: 37409495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure.
    Yao W; Sun C; Gong Q; Chen J
    Nanotechnology; 2016 Sep; 27(38):385204. PubMed ID: 27533591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic layer-selective all-optical switching of magnetization with nanometer resolution.
    Ignatyeva DO; Davies CS; Sylgacheva DA; Tsukamoto A; Yoshikawa H; Kapralov PO; Kirilyuk A; Belotelov VI; Kimel AV
    Nat Commun; 2019 Oct; 10(1):4786. PubMed ID: 31636269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanodisks Plasmonic Array for Hydrogen Sensing at Low Temperature.
    Sturaro M; Zacco G; Zilio P; Surpi A; Bazzan M; Martucci A
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focusing short-wavelength surface plasmons by a plasmonic mirror.
    Ogut E; Yanik C; Kaya II; Ow-Yang C; Sendur K
    Opt Lett; 2018 May; 43(9):2208-2211. PubMed ID: 29714791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement.
    Juan ML; Plain J; Bachelot R; Vial A; Royer P; Gray SK; Montgomery JM; Wiederrecht GP
    J Phys Chem A; 2009 Apr; 113(16):4647-51. PubMed ID: 19296647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.
    Shoji T; Saitoh J; Kitamura N; Nagasawa F; Murakoshi K; Yamauchi H; Ito S; Miyasaka H; Ishihara H; Tsuboi Y
    J Am Chem Soc; 2013 May; 135(17):6643-8. PubMed ID: 23586869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical switching of nematic liquid crystal films driven by localized surface plasmons.
    Quint MT; Delgado S; Paredes JH; Nuno ZS; Hirst LS; Ghosh S
    Opt Express; 2015 Mar; 23(5):6888-95. PubMed ID: 25836908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching nanoscale temperature fields with high-order plasmonic modes in transition metal nanorods.
    Setoura K; Tamura M; Oshikiri T; Iida T
    RSC Adv; 2023 Nov; 13(49):34489-34496. PubMed ID: 38024990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.