These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 37929027)

  • 1. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation.
    Jasra IT; Cuesta-Gomez N; Verhoeff K; Marfil-Garza BA; Dadheech N; Shapiro AMJ
    Front Endocrinol (Lausanne); 2023; 14():1236472. PubMed ID: 37929027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation.
    Giallongo S; Rehakova D; Raffaele M; Lo Re O; Koutna I; Vinciguerra M
    Antioxid Redox Signal; 2021 Feb; 34(4):335-349. PubMed ID: 32567336
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells.
    Mishra S; Kacin E; Stamatiadis P; Franck S; Van der Jeught M; Mertes H; Pennings G; De Sutter P; Sermon K; Heindryckx B; Geens M
    Mol Hum Reprod; 2018 Apr; 24(4):173-184. PubMed ID: 29471503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic and Transcriptional Analyses Reveal Atmospheric Oxygen During Human Induced Pluripotent Stem Cell Generation Impairs Metabolic Reprogramming.
    Spyrou J; Gardner DK; Harvey AJ
    Stem Cells; 2019 Aug; 37(8):1042-1056. PubMed ID: 31042329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
    El Khatib MM; Ohmine S; Jacobus EJ; Tonne JM; Morsy SG; Holditch SJ; Schreiber CA; Uetsuka K; Fusaki N; Wigle DA; Terzic A; Kudva YC; Ikeda Y
    Stem Cells Transl Med; 2016 May; 5(5):694-702. PubMed ID: 26987352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of somatic cell reprogramming.
    Wang Y; Bi Y; Gao S
    Curr Opin Genet Dev; 2017 Oct; 46():156-163. PubMed ID: 28823984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.
    Menendez JA; Vellon L; Oliveras-Ferraros C; Cufí S; Vazquez-Martin A
    Cell Cycle; 2011 Nov; 10(21):3658-77. PubMed ID: 22052357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?
    Lopes C; Rego AC
    Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms.
    Ying SY; Fang W; Lin SL
    Methods Mol Biol; 2018; 1733():283-304. PubMed ID: 29435941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Memory: Lessons From iPS Cells Derived From Human β Cells.
    Efrat S
    Front Endocrinol (Lausanne); 2020; 11():614234. PubMed ID: 33584546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.
    Hsu YC; Chen CT; Wei YH
    Biochim Biophys Acta; 2016 Apr; 1860(4):686-93. PubMed ID: 26779594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic and Transcriptional Shifts in Human Neural Stem Cells after Reprogramming into Induced Pluripotent Stem Cells and Subsequent Redifferentiation.
    Haubenreich C; Lenz M; Schuppert A; Peitz M; Koch P; Zenke M; Brüstle O
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.
    Hsu YC; Wu YT; Tsai CL; Wei YH
    Exp Biol Med (Maywood); 2018 Mar; 243(6):563-575. PubMed ID: 29557214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
    van den Hurk M; Kenis G; Bardy C; van den Hove DL; Gage FH; Steinbusch HW; Rutten BP
    Epigenomics; 2016 Aug; 8(8):1131-49. PubMed ID: 27419933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.
    Chen CT; Hsu SH; Wei YH
    Biochim Biophys Acta; 2012 May; 1820(5):571-6. PubMed ID: 21983491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic Reprogramming-Above and Beyond Pluripotency.
    Meir YJ; Li G
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray.
    He W; Kang X; Du H; Song B; Lu Z; Huang Y; Wang D; Sun X; Yu Y; Fan Y
    PLoS One; 2014; 9(9):e108350. PubMed ID: 25250679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine.
    Poetsch MS; Strano A; Guan K
    Stem Cells; 2022 Jun; 40(6):546-555. PubMed ID: 35291013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming.
    Sayed N; Ospino F; Himmati F; Lee J; Chanda P; Mocarski ES; Cooke JP
    Stem Cells; 2017 May; 35(5):1197-1207. PubMed ID: 28276156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.