These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37929074)

  • 1. Zero-shot model-free learning of periodic movements for a bio-inspired soft-robotic arm.
    Oikonomou P; Dometios A; Khamassi M; Tzafestas CS
    Front Robot AI; 2023; 10():1256763. PubMed ID: 37929074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control Architecture for Human-Like Motion With Applications to Articulated Soft Robots.
    Angelini F; Della Santina C; Garabini M; Bianchi M; Bicchi A
    Front Robot AI; 2020; 7():117. PubMed ID: 33501283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Developments of Actuation Mechanisms for Continuum Robots: A Review.
    Seleem IA; El-Hussieny H; Ishii H
    Int J Control Autom Syst; 2023; 21(5):1592-1609. PubMed ID: 37151813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater Crawling Robot With Hydraulic Soft Actuators.
    Tan Q; Chen Y; Liu J; Zou K; Yi J; Liu S; Wang Z
    Front Robot AI; 2021; 8():688697. PubMed ID: 34513936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications.
    Guo J; Li Z; Low JH; Han Q; Chen CY; Liu J; Liu Z; Yeow CH
    Soft Robot; 2023 Aug; 10(4):737-748. PubMed ID: 36827310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actuation and design innovations in earthworm-inspired soft robots: A review.
    Liu J; Li P; Zuo S
    Front Bioeng Biotechnol; 2023; 11():1088105. PubMed ID: 36896011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Kinematic Motion Primitives (kMPs) - Theory and Application.
    Moro FL; Tsagarakis NG; Caldwell DG
    Front Neurorobot; 2012; 6():10. PubMed ID: 23091459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake.
    Luo M; Wan Z; Sun Y; Skorina EH; Tao W; Chen F; Gopalka L; Yang H; Onal CD
    Front Robot AI; 2020; 7():599242. PubMed ID: 33501359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omnidirectional compliance on cross-linked actuator coordination enables simultaneous multi-functions of soft modular robots.
    Fang Z; Wu Y; Su Y; Yi J; Liu S; Wang Z
    Sci Rep; 2023 Jul; 13(1):12116. PubMed ID: 37495618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired Motion Emulation for Social Robots: A Real-Time Trajectory Generation and Control Approach.
    Cheng MH; Huang PL; Chu HC
    Biomimetics (Basel); 2024 Sep; 9(9):. PubMed ID: 39329579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Kinematic Modeling of a Soft Continuum Telescopic Arm for the Self-Assembly Mechanism of a Modular Robot.
    Gomez V; Hernando M; Aguado E; Bajo D; Rossi C
    Soft Robot; 2024 Apr; 11(2):347-360. PubMed ID: 37878327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-Based Learning Mechanism for Fast Online Adaptation in Robot Motor Control.
    Thor M; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2042-2051. PubMed ID: 31395565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation.
    Must I; Sinibaldi E; Mazzolai B
    Nat Commun; 2019 Jan; 10(1):344. PubMed ID: 30664648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots.
    Nazeer MS; Laschi C; Falotico E
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisting Forearm Function in Children With Movement Disorders
    Realmuto J; Sanger TD
    Front Robot AI; 2022; 9():877041. PubMed ID: 35783026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.