These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37929091)

  • 1. Effect of Temperature, Pressure, and Type of Gas Injected on the Formation and Decay of Mineral Oil-Based Foams.
    Tiuman ET; da Silva FS; Morales REM; Marcelino Neto MA
    ACS Omega; 2023 Oct; 8(43):40321-40340. PubMed ID: 37929091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.
    Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA
    J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foam formation and mitigation in a three-phase gas-liquid-particulate system.
    Vijayaraghavan K; Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2006 Nov; 123-126():49-61. PubMed ID: 16997269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Pressure and Temperature on Foam Behavior for Enhanced Underbalanced Drilling Operations.
    Gowida A; Elkatatny S; Ibrahim AF; Kamal MS
    ACS Omega; 2024 Jan; 9(1):1042-1055. PubMed ID: 38222667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on Foam Decay Trend and Influence of Temperature Jump on Foam Stability in Sclerotherapy.
    Bai T; Chen Y; Jiang W; Yan F; Fan Y
    Vasc Endovascular Surg; 2018 Feb; 52(2):98-106. PubMed ID: 29173136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system.
    Shrestha LK; Shrestha RG; Sharma SC; Aramaki K
    J Colloid Interface Sci; 2008 Dec; 328(1):172-9. PubMed ID: 18823901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foam production--ratio between foaminess and rate of foam decay.
    Karakashev SI; Georgiev P; Balashev K
    J Colloid Interface Sci; 2012 Aug; 379(1):144-7. PubMed ID: 22608847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensate Oil-Tolerant Foams Stabilized by an Anionic-Sulfobetaine Surfactant Mixture.
    Qu C; Wang J; Yin H; Lu G; Li Z; Feng Y
    ACS Omega; 2019 Jan; 4(1):1738-1747. PubMed ID: 31459431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the formation and stability of foams used as precursors of porous materials.
    Lesov I; Tcholakova S; Denkov N
    J Colloid Interface Sci; 2014 Jul; 426():9-21. PubMed ID: 24863759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Effect of Nanoparticle-Stabilized Foam on EOR: Nitrogen Foam and Methane Foam.
    Xu Z; Li B; Zhao H; He L; Liu Z; Chen D; Yang H; Li Z
    ACS Omega; 2020 Aug; 5(30):19092-19103. PubMed ID: 32775911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foams and antifoams.
    Karakashev SI; Grozdanova MV
    Adv Colloid Interface Sci; 2012; 176-177():1-17. PubMed ID: 22560722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy to fabricate stable oil foams with sucrose ester surfactant.
    Liu Y; Binks BP
    J Colloid Interface Sci; 2021 Jul; 594():204-216. PubMed ID: 33761395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foam formation during drainage of a surfactant solution in a microfluidic porous medium model.
    Lima N; Parsa S; Paciornik S; Carvalho MS
    Sci Rep; 2023 Dec; 13(1):21802. PubMed ID: 38071214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of synthesized silane-based silica Janus nanoparticles to improve foam stability applicable in oil production: static study.
    Saeedi Dehaghani AH; Gharibshahi R; Mohammadi M
    Sci Rep; 2023 Oct; 13(1):18652. PubMed ID: 37903908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height.
    Emami H; Ayatizadeh Tanha A; Khaksar Manshad A; Mohammadi AH
    ACS Omega; 2022 May; 7(17):14832-14847. PubMed ID: 35557679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foam Dynamics in Limestone Carbonate Cores.
    Aarra MG; Murad AM; Solbakken JS; Skauge A
    ACS Omega; 2020 Sep; 5(37):23604-23612. PubMed ID: 32984680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving foaming control smartly: pre-solubilized flavor oil serves as an in situ homogeneous defoamer.
    Qi N; Sun H; Zhao H; Li Y
    Soft Matter; 2018 Mar; 14(11):2059-2067. PubMed ID: 29480304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Simulator for Three-Phase Gravity Separators in Oil Production Facilities.
    Song S; Liu X; Li C; Li Z; Zhang S; Wu W; Shi B; Kang Q; Wu H; Gong J
    ACS Omega; 2023 Feb; 8(6):6078-6089. PubMed ID: 36816666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Screening and Evaluation of Foam Drainage Agents for Gas Wells with High Temperature and High Pressure.
    Guan J; Liang L; Zhao Y; Sun N; Lu W; Zhen Y
    ACS Omega; 2023 Feb; 8(8):7940-7949. PubMed ID: 36873001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.