BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37929157)

  • 1. Catalytic Copyrolysis of Used Waste Plastic and Lubricating Oil Using Cu-Modification of a Spent Fluid Catalytic Cracking Catalyst for Diesel-like Fuel Production.
    Charusiri W; Phowan N; Permpoonwiwat A; Vitidsant T
    ACS Omega; 2023 Oct; 8(43):40785-40800. PubMed ID: 37929157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Activated Carbon with Spent Fluid Catalytic Cracking Catalyst and MgO for the Catalytic Conversion of Waste Polyethylene Wax into Diesel-like Hydrocarbon Fuels.
    Kasetsupsin P; Vitidsant T; Permpoonwiwat A; Phowan N; Charusiri W
    ACS Omega; 2022 Jun; 7(23):20306-20320. PubMed ID: 35721905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance, combustion, and emission characteristics of bio-oil produced by in situ catalytic pyrolysis of polypropylene using spent FCC.
    Meena P; Singh S; Sharma N; Saharan VK; George S; Bhoi R
    Environ Sci Pollut Res Int; 2023 Nov; ():. PubMed ID: 37950124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11.
    Lee N; Joo J; Lin KA; Lee J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel.
    Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A
    J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst.
    Banchapattanasakda W; Asavatesanupap C; Santikunaporn M
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene terephthalate conversion into liquid fuel by its co-pyrolysis with low- and high-density polyethylene employing scrape aluminium as catalyst.
    Gulab H; Malik S
    Environ Technol; 2024 Jul; 45(18):3721-3735. PubMed ID: 37326613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Catalytic-Cracking Low-Density Polyethylene Waste by Metakaolin-Based Geopolymer NaA Microsphere.
    Tang S; He Y; Deng X; Cui X
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO.
    Huo E; Lei H; Liu C; Zhang Y; Xin L; Zhao Y; Qian M; Zhang Q; Lin X; Wang C; Mateo W; Villota EM; Ruan R
    Sci Total Environ; 2020 Jul; 727():138411. PubMed ID: 32334209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the effect of Cu-SrO loading on catalyst supports (ZSM-5, Y-zeolite, activated carbon, Al
    Kassa Dada T; Vuppaladadiyam A; Xiaofei Duan A; Kumar R; Antunes E
    Bioresour Technol; 2022 Sep; 360():127515. PubMed ID: 35764281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery.
    Cai W; Kumar R; Zheng Y; Zhu Z; Wong JWC; Zhao J
    Heliyon; 2023 Dec; 9(12):e23140. PubMed ID: 38076152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.
    Joppert N; da Silva AA; da Costa Marques MR
    Waste Manag; 2015 Feb; 36():166-76. PubMed ID: 25532672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Fatty Acid Methyl Ester from
    Zamba ZZ; Reshad AS
    ACS Omega; 2022 Jun; 7(24):20619-20633. PubMed ID: 35935297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a pyrolyser model for the conversion of thermoplastics into fuels.
    Dassi Djoukouo NH; Djousse BMK; Doukeng HG; Egbe DAM; Tangka JK; Tchoffo M
    Heliyon; 2024 Mar; 10(5):e26702. PubMed ID: 38463835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst.
    Dwivedi U; Naik SN; Pant KK
    Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites.
    Attique S; Batool M; Yaqub M; Goerke O; Gregory DH; Shah AT
    Waste Manag Res; 2020 Jun; 38(6):689-695. PubMed ID: 32026752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions.
    Rodríguez E; Gutiérrez A; Palos R; Vela FJ; Arandes JM; Bilbao J
    Waste Manag; 2019 Jun; 93():162-172. PubMed ID: 31235053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.