These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37929175)

  • 1. Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel.
    Cuevas HE; Knoll JE; Prom LK; Stutts LR; Vermerris W
    Front Plant Sci; 2023; 14():1249555. PubMed ID: 37929175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Mapping of Anthracnose (
    Cuevas HE; Prom LK; Cruet-Burgos CM
    G3 (Bethesda); 2019 Sep; 9(9):2879-2885. PubMed ID: 31289022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inheritance of anthracnose (Colletotrichum sublineola) resistance in sorghum differential lines QL3 and IS18760.
    Cuevas HE; Cruet-Burgos CM; Prom LK; Knoll JE; Stutts LR; Vermerris W
    Sci Rep; 2021 Oct; 11(1):20525. PubMed ID: 34654899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE; Prom LK
    BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the genetic basis of anthracnose resistance in Ethiopian sorghum through a genome-wide association study.
    Birhanu C; Girma G; Mekbib F; Nida H; Tirfessa A; Lule D; Bekeko Z; Ayana G; Bejiga T; Bedada G; Tola M; Legesse T; Alemu H; Admasu S; Bekele A; Mengiste T
    BMC Genomics; 2024 Jul; 25(1):677. PubMed ID: 38977981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Dissection of Anthracnose (
    Cruet-Burgos CM; Cuevas HE; Prom LK; Knoll JE; Stutts LR; Vermerris W
    G3 (Bethesda); 2020 Apr; 10(4):1403-1412. PubMed ID: 32102832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating Anthracnose Resistance Mechanisms in Sorghum-A Review.
    Stutts LR; Vermerris W
    Phytopathology; 2020 Dec; 110(12):1863-1876. PubMed ID: 33100146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Association Mapping of Anthracnose (
    Cuevas HE; Prom LK; Cooper EA; Knoll JE; Ni X
    Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.
    J Felderhoff T; M McIntyre L; Saballos A; Vermerris W
    G3 (Bethesda); 2016 Jul; 6(7):1935-46. PubMed ID: 27194807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Characterization of
    Koima IN; Kilalo DC; Orek CO; Wagacha JM; Nyaboga EN
    J Fungi (Basel); 2023 Jan; 9(1):. PubMed ID: 36675921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose.
    Ahn E; Prom LK; Hu Z; Odvody G; Magill C
    Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench].
    Mengistu G; Shimelis H; Assefa E; Lule D
    PLoS One; 2021; 16(12):e0261461. PubMed ID: 34929013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Diversity and Classification of
    Prom LK; Ahn EJS; Perumal R; Cuevas HE; Rooney WL; Isakeit TS; Magill CW
    J Fungi (Basel); 2023 Dec; 10(1):. PubMed ID: 38276019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes.
    Cuevas HE; Prom LK; Rosa-Valentin G
    PLoS One; 2018; 13(2):e0191877. PubMed ID: 29444109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study of Senegalese sorghum seedlings responding to a Texas isolate of Colletotrichum sublineola.
    Ahn E; Fall C; Prom LK; Magill C
    Sci Rep; 2022 Jul; 12(1):13025. PubMed ID: 35906277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.
    Upadhyaya HD; Wang YH; Sharma R; Sharma S
    Theor Appl Genet; 2013 Jun; 126(6):1649-57. PubMed ID: 23463493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Anthracnose on Grain Sorghum Hybrids Inoculated with Recently Described Pathotypes of Colletotrichum sublineolum Found in Arkansas.
    Moore JW; Ditmore M; TeBeest DO
    Plant Dis; 2010 May; 94(5):589-595. PubMed ID: 30754471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola.
    Prom LK; Ahn E; Isakeit T; Magill C
    Theor Appl Genet; 2019 May; 132(5):1389-1396. PubMed ID: 30688991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.