These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37929195)

  • 1. Effects of extreme cyclic loading on the cushioning performance of human heel pads under engineering test condition.
    Qian Z; Zhuang Z; Liu X; Bai H; Ren L; Ren L
    Front Bioeng Biotechnol; 2023; 11():1229976. PubMed ID: 37929195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization Design of the Inner Structure for a Bioinspired Heel Pad with Distinct Cushioning Property.
    Jin J; Wang K; Ren L; Qian Z; Lu X; Liang W; Xu X; Zhao S; Zhao D; Wang X; Ren L
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An
    Yang XG; Teng ZL; Zhang ZM; Wang K; Huang R; Chen WM; Wang C; Chen L; Zhang C; Huang JZ; Wang X; Ma X; Geng X
    Front Endocrinol (Lausanne); 2022; 13():894383. PubMed ID: 36060939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional inverse finite element analysis of the heel pad.
    Chokhandre S; Halloran JP; van den Bogert AJ; Erdemir A
    J Biomech Eng; 2012 Mar; 134(3):031002. PubMed ID: 22482682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of loading conditions on stress in the barefooted heel pad.
    Spears IR; Miller-Young JE; Waters M; Rome K
    Med Sci Sports Exerc; 2005 Jun; 37(6):1030-6. PubMed ID: 15947730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in heel pad mechanical properties variation between children and young adults.
    Wang CL; Hsu TC; Shau YW; Wong MK
    J Formos Med Assoc; 1998 Dec; 97(12):850-4. PubMed ID: 9884488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of the human heel pad: a comparison between populations.
    Rchallis JH; Murdoch C; Winter SL
    J Appl Biomech; 2008 Nov; 24(4):377-81. PubMed ID: 19075307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness.
    Aerts P; De Clercq D
    J Sports Sci; 1993 Oct; 11(5):449-61. PubMed ID: 8301705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear.
    Chatzistergos PE; Naemi R; Chockalingam N
    Med Eng Phys; 2015 Jun; 37(6):531-8. PubMed ID: 25937545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome.
    Tsai WC; Wang CL; Hsu TC; Hsieh FJ; Tang FT
    Foot Ankle Int; 1999 Oct; 20(10):663-8. PubMed ID: 10541000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.