These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37929600)

  • 1. A Machine Learning Study on High Thermal Conductivity Assisted to Discover Chalcogenides with Balanced Infrared Nonlinear Optical Performance.
    Wu Q; Kang L; Lin Z
    Adv Mater; 2024 Feb; 36(6):e2309675. PubMed ID: 37929600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unbiased Screening of Novel Infrared Nonlinear Optical Materials with High Thermal Conductivity: Long-neglected Nitrides and Popular Chalcogenides.
    Chu D; Huang Y; Xie C; Tikhonov E; Kruglov I; Li G; Pan S; Yang Z
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202300581. PubMed ID: 36807452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Novel Promising Infrared Nonlinear Optical Materials: Structural Chemistry and Balanced Performances.
    Zhou W; Guo SP
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38301117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold.
    Li SF; Jiang XM; Fan YH; Liu BW; Zeng HY; Guo GC
    Chem Sci; 2018 Jul; 9(26):5700-5708. PubMed ID: 30079178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and Characterization of NaGaS
    Hou D; Nissimagoudar AS; Bian Q; Wu K; Pan S; Li W; Yang Z
    Inorg Chem; 2019 Jan; 58(1):93-98. PubMed ID: 29905473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors.
    Li J; Hu W; Yang J
    J Am Chem Soc; 2022 Mar; 144(10):4448-4456. PubMed ID: 35230828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn
    Chu Y; Wang H; Abutukadi T; Li Z; Mutailipu M; Su X; Yang Z; Li J; Pan S
    Small; 2023 Nov; 19(46):e2305074. PubMed ID: 37475504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances.
    Wang R; Liang F; Lin Z
    Sci Rep; 2020 Feb; 10(1):3486. PubMed ID: 32103085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-inclusion chalcogenides: an emerging class of IR nonlinear optical materials.
    Yue QG; Wei WB; Chen H; Wu XT; Lin H; Zhu QL
    Dalton Trans; 2020 Oct; 49(41):14338-14343. PubMed ID: 33034331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. {[In
    Huang X; Chen YX; Xue Y; Wang YC; Ren QH; Liu W; Wu J; Guo SP
    Inorg Chem; 2023 May; 62(19):7160-7164. PubMed ID: 37125783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AZn
    Chen MM; Zhou SH; Wei W; Wu XT; Lin H; Zhu QL
    Inorg Chem; 2021 Jul; 60(13):10038-10046. PubMed ID: 34134479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Combination of Structure Prediction and Experiment for the Exploration of Alkali-Earth Metal-Contained Chalcopyrite-Like IR Nonlinear Optical Material.
    Wang P; Chu Y; Tudi A; Xie C; Yang Z; Pan S; Li J
    Adv Sci (Weinh); 2022 May; 9(15):e2106120. PubMed ID: 35404514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding Optimal Mid-Infrared Nonlinear Optical Materials in Germanates by First-Principles High-Throughput Screening and Experimental Verification.
    Yu J; Zhang B; Zhang X; Wang Y; Wu K; Lee MH
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45023-45035. PubMed ID: 32924416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Design and Simulations Promote the Development of Nonlinear Optical Crystals.
    Kang L; Liang F; Jiang X; Lin Z; Chen C
    Acc Chem Res; 2020 Jan; 53(1):209-217. PubMed ID: 31659896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking through the "3.0 eV wall" of energy band gap in mid-infrared nonlinear optical rare earth chalcogenides by charge-transfer engineering.
    Mei D; Cao W; Wang N; Jiang X; Zhao J; Wang W; Dang J; Zhang S; Wu Y; Rao P; Lin Z
    Mater Horiz; 2021 Aug; 8(8):2330-2334. PubMed ID: 34846438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn
    Lin H; Chen H; Zheng YJ; Yu JS; Wu XT; Wu LM
    Dalton Trans; 2017 Jun; 46(24):7714-7721. PubMed ID: 28537606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds.
    Zhang MJ; Li BX; Liu BW; Fan YH; Li XG; Zeng HY; Guo GC
    Dalton Trans; 2013 Oct; 42(39):14223-9. PubMed ID: 23945826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map.
    Liu BW; Jiang XM; Pei SM; Chen WF; Yang LQ; Guo GC
    Mater Horiz; 2021 Nov; 8(12):3394-3398. PubMed ID: 34676385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on the recently developed promising infrared nonlinear optical materials.
    Abudurusuli A; Li J; Pan S
    Dalton Trans; 2021 Mar; 50(9):3155-3160. PubMed ID: 33564814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMnAs
    Ye R; Liu BW; Jiang XM; Lu J; Zeng HY; Guo GC
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53950-53956. PubMed ID: 33169978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.