These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37929921)

  • 1. Highly efficient helium purification through a dual-membrane system: insights from molecular dynamics simulations.
    Pakdel S; Erfan-Niya H; Azamat J; Hasanzadeh A
    Phys Chem Chem Phys; 2023 Nov; 25(44):30572-30582. PubMed ID: 37929921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient separation of He/CH
    Pakdel S; Erfan-Niya H; Azamat J
    J Mol Graph Model; 2022 Sep; 115():108211. PubMed ID: 35568005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the performance of RHO type zeolite membrane for CH
    Ghasemi F; Alizadeh M; Azamat J; Erfan-Niya H
    J Mol Graph Model; 2024 Mar; 127():108673. PubMed ID: 37992551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency helium separation through an inorganic graphenylene membrane: a theoretical study.
    Wang L; Li F; Wang J; Li Y; Li W; Yang Y; Zhao M; Qu Y
    Phys Chem Chem Phys; 2020 May; 22(17):9789-9795. PubMed ID: 32337529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification.
    Aydin S; Altintas C; Keskin S
    ACS Appl Mater Interfaces; 2022 May; 14(18):21738-21749. PubMed ID: 35481770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance N
    Xing G; Cong S; Wang B; Qiao Z; Li Q; Cong C; Yuan Y; Sheng M; Zhou Y; Shi F; Ma J; Pan Y; Liu X; Zhao S; Wang J; Wang Z
    Small; 2024 Apr; 20(14):e2309360. PubMed ID: 37990358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defective germanene as a high-efficiency helium separation membrane: a first-principles study.
    Zhu L; Chang X; He D; Xue Q; Li X; Jin Y; Zheng H; Ling C
    Nanotechnology; 2017 Mar; 28(13):135703. PubMed ID: 28248644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas.
    Wang X; Shan M; Liu X; Wang M; Doherty CM; Osadchii D; Kapteijn F
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20098-20103. PubMed ID: 31094508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Phase Composition of Metal-Organic Framework Membranes for Helium Separation through Incorporation of Fullerenes.
    Han J; Wu H; Fan H; Ding L; Hai G; Caro J; Wang H
    J Am Chem Soc; 2023 Jul; 145(27):14793-14801. PubMed ID: 37351897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Selective Hydrogen Permeation through Graphdiyne Membrane: A Theoretical Study.
    Liu Q; Cheng L; Liu G
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Helium Separation with Two-Dimensional Metal-Organic Framework Fe/Ni-PTC: A Theoretical Study.
    Wang J; Li Y; Yang Y; Li Y; Zhao M; Li W; Guan J; Qu Y
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane.
    Rezaee P; Naeij HR
    Sci Rep; 2020 Aug; 10(1):13549. PubMed ID: 32782345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO
    Neyertz S; Brown D; Salimi S; Radmanesh F; Benes NE
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From molecular sieving to gas effusion through nanoporous 2D graphenes: Comparison between analytical predictions and molecular simulations.
    Guo J; Galliero G; Vermorel R
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing CH
    Chang M; Yan T; Wei Y; Wang JX; Liu D; Chen JF
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25374-25384. PubMed ID: 35623040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Membranes for Helium Separation and Purification.
    Scholes CA; Ghosh UK
    Membranes (Basel); 2017 Feb; 7(1):. PubMed ID: 28218644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.