These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37930021)
1. ComplexQA: a deep graph learning approach for protein complex structure assessment. Zhang L; Wang S; Hou J; Si D; Zhu J; Cao R Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930021 [TBL] [Abstract][Full Text] [Related]
3. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers. Roy RS; Quadir F; Soltanikazemi E; Cheng J Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816 [TBL] [Abstract][Full Text] [Related]
4. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
5. SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer. Hu W; Ohue M Comput Struct Biotechnol J; 2024 Dec; 23():1214-1225. PubMed ID: 38545599 [TBL] [Abstract][Full Text] [Related]
6. PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries. Shuvo MH; Karim M; Roche R; Bhattacharya D Bioinform Adv; 2023; 3(1):vbad070. PubMed ID: 37351310 [TBL] [Abstract][Full Text] [Related]
7. Energy-based graph convolutional networks for scoring protein docking models. Cao Y; Shen Y Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844 [TBL] [Abstract][Full Text] [Related]
8. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Li Y; Hu J; Zhang C; Yu DJ; Zhang Y Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716 [TBL] [Abstract][Full Text] [Related]
9. Assessing protein model quality based on deep graph coupled networks using protein language model. Liu D; Zhang B; Liu J; Li H; Song L; Zhang G Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018909 [TBL] [Abstract][Full Text] [Related]
10. Protein quality assessment with a loss function designed for high-quality decoys. Roy S; Ben-Hur A Front Bioinform; 2023; 3():1198218. PubMed ID: 37915563 [No Abstract] [Full Text] [Related]
11. Contrastive learning of protein representations with graph neural networks for structural and functional annotations. Luo J; Luo Y Pac Symp Biocomput; 2023; 28():109-120. PubMed ID: 36540969 [TBL] [Abstract][Full Text] [Related]
12. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding. Yang F; Fan K; Song D; Lin H BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790 [TBL] [Abstract][Full Text] [Related]
13. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning. Gu Y; Li J; Kang H; Zhang B; Zheng S Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234 [TBL] [Abstract][Full Text] [Related]
14. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution. Dehghani T; Naghibzadeh M; Eghdami M Comput Biol Med; 2019 Jan; 104():241-249. PubMed ID: 30530227 [TBL] [Abstract][Full Text] [Related]
15. Enhancing protein inter-residue real distance prediction by scrutinising deep learning models. Rahman J; Newton MAH; Islam MKB; Sattar A Sci Rep; 2022 Jan; 12(1):787. PubMed ID: 35039537 [TBL] [Abstract][Full Text] [Related]
16. Applying and improving AlphaFold at CASP14. Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates R; Žídek A; Potapenko A; Bridgland A; Meyer C; Kohl SAA; Ballard AJ; Cowie A; Romera-Paredes B; Nikolov S; Jain R; Adler J; Back T; Petersen S; Reiman D; Clancy E; Zielinski M; Steinegger M; Pacholska M; Berghammer T; Silver D; Vinyals O; Senior AW; Kavukcuoglu K; Kohli P; Hassabis D Proteins; 2021 Dec; 89(12):1711-1721. PubMed ID: 34599769 [TBL] [Abstract][Full Text] [Related]
17. Struct2GO: protein function prediction based on graph pooling algorithm and AlphaFold2 structure information. Jiao P; Wang B; Wang X; Liu B; Wang Y; Li J Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37847755 [TBL] [Abstract][Full Text] [Related]
18. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning. Zhuo L; Song B; Liu Y; Li Z; Fu X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562 [TBL] [Abstract][Full Text] [Related]
19. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network. Huang Y; Wuchty S; Zhou Y; Zhang Z Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36682013 [TBL] [Abstract][Full Text] [Related]
20. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces. Réau M; Renaud N; Xue LC; Bonvin AMJJ Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36420989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]