These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37930022)

  • 61. cfOmics: a cell-free multi-Omics database for diseases.
    Li M; Zhou T; Han M; Wang H; Bao P; Tao Y; Chen X; Wu G; Liu T; Wang X; Lu Q; Zhu Y; Lu ZJ
    Nucleic Acids Res; 2024 Jan; 52(D1):D607-D621. PubMed ID: 37757861
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 63. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis.
    Castellano-Escuder P; González-Domínguez R; Carmona-Pontaque F; Andrés-Lacueva C; Sánchez-Pla A
    PLoS Comput Biol; 2021 Jul; 17(7):e1009148. PubMed ID: 34197462
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sopa: a technology-invariant pipeline for analyses of image-based spatial omics.
    Blampey Q; Mulder K; Gardet M; Christodoulidis S; Dutertre CA; André F; Ginhoux F; Cournède PH
    Nat Commun; 2024 Jun; 15(1):4981. PubMed ID: 38862483
    [TBL] [Abstract][Full Text] [Related]  

  • 66. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
    Wen G; Li L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PSpecteR: A User-Friendly and Interactive Application for Visualizing Top-Down and Bottom-Up Proteomics Data in R.
    Degnan DJ; Bramer LM; White AM; Zhou M; Bilbao A; McCue LA
    J Proteome Res; 2021 Apr; 20(4):2014-2020. PubMed ID: 33661636
    [TBL] [Abstract][Full Text] [Related]  

  • 68. POCP-nf: an automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy.
    Hölzer M
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38561180
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FastMix: a versatile data integration pipeline for cell type-specific biomarker inference.
    Zhang Y; Sun H; Mandava A; Aevermann BD; Kollmann TR; Scheuermann RH; Qiu X; Qian Y
    Bioinformatics; 2022 Oct; 38(20):4735-4744. PubMed ID: 36018232
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage.
    Li CX; Chen H; Zounemat-Kermani N; Adcock IM; Sköld CM; Zhou M; Wheelock ÅM;
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38205966
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CancerDiscover: an integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data.
    Mohammed A; Biegert G; Adamec J; Helikar T
    Oncotarget; 2018 Jan; 9(2):2565-2573. PubMed ID: 29416792
    [TBL] [Abstract][Full Text] [Related]  

  • 72. MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification.
    Moon S; Lee H
    Bioinformatics; 2022 Apr; 38(8):2287-2296. PubMed ID: 35157023
    [TBL] [Abstract][Full Text] [Related]  

  • 73. riboCleaner: a pipeline to identify and quantify rRNA read contamination from RNA-seq data in plants.
    Huang P; Davis E; Cao X; Cameron HJ
    Bioinformatics; 2022 Aug; 38(15):3840-3843. PubMed ID: 35731209
    [TBL] [Abstract][Full Text] [Related]  

  • 74. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
    Andreatta M; Carmona SJ
    Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A graph-based approach for designing extensible pipelines.
    Rodrigues MR; Magalhães WC; Machado M; Tarazona-Santos E
    BMC Bioinformatics; 2012 Jul; 13():163. PubMed ID: 22788675
    [TBL] [Abstract][Full Text] [Related]  

  • 76. DELFOS-drug efficacy leveraging forked and specialized networks-benchmarking scRNA-seq data in multi-omics-based prediction of cancer sensitivity.
    Piochi LF; Preto AJ; Moreira IS
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862234
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An omics perspective on drug target discovery platforms.
    Paananen J; Fortino V
    Brief Bioinform; 2020 Dec; 21(6):1937-1953. PubMed ID: 31774113
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.
    Azam S; Rathore A; Shah TM; Telluri M; Amindala B; Ruperao P; Katta MA; Varshney RK
    PLoS One; 2014; 9(7):e101754. PubMed ID: 25003610
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Current advances in comprehensive omics data mining for oncology and cancer research.
    Jeong E; Yoon S
    Biochim Biophys Acta Rev Cancer; 2024 Jan; 1879(1):189030. PubMed ID: 38008264
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Integration of Metabolomic and Proteomic Data to Uncover Actionable Metabolic Pathways.
    Heckendorf C; Blum BC; Lin W; Lawton ML; Emili A
    Methods Mol Biol; 2023; 2660():137-148. PubMed ID: 37191795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.