BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37930028)

  • 1. scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data.
    Li W; Xiang B; Yang F; Rong Y; Yin Y; Yao J; Zhang H
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
    Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH
    Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale self-supervised hypergraph contrastive learning framework for video question answering.
    Wang Z; Wu B; Ota K; Dong M; Li H
    Neural Netw; 2023 Nov; 168():272-286. PubMed ID: 37774513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HyperTMO: a trusted multi-omics integration framework based on hypergraph convolutional network for patient classification.
    Wang H; Lin K; Zhang Q; Shi J; Song X; Wu J; Zhao C; He K
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38530977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.
    Chung RH; Kang CY
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes.
    Ghaffari S; Hanson C; Schmidt RE; Bouchonville KJ; Offer SM; Sinha S
    Genome Biol; 2021 Jan; 22(1):19. PubMed ID: 33413550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of multi-relational drug-gene interaction via Dynamic hyperGraph Contrastive Learning.
    Tao W; Liu Y; Lin X; Song B; Zeng X
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37864294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic weighted hypergraph convolutional network for brain functional connectome analysis.
    Wang J; Li H; Qu G; Cecil KM; Dillman JR; Parikh NA; He L
    Med Image Anal; 2023 Jul; 87():102828. PubMed ID: 37130507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering Altered Regulation and Signaling Through Network-based Integration of Transcriptomic, Epigenomic, and Proteomic Tumor Data.
    Kedaigle AJ; Fraenkel E
    Methods Mol Biol; 2018; 1711():13-26. PubMed ID: 29344883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data.
    Wu MJ; Gao YL; Liu JX; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1823-1834. PubMed ID: 31634852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HGNN
    Gao Y; Feng Y; Ji S; Ji R
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3181-3199. PubMed ID: 35696461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrastively generative self-expression model for single-cell and spatial multimodal data.
    Zhang C; Yang Y; Tang S; Aihara K; Zhang C; Chen L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of technologies for MS-based proteomics-centric multi-omics.
    Rajczewski AT; Jagtap PD; Griffin TJ
    Expert Rev Proteomics; 2022 Mar; 19(3):165-181. PubMed ID: 35466851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust joint clustering of multi-omics single-cell data via multi-modal high-order neighborhood Laplacian matrix optimization.
    Jiang H; Zhan S; Ching WK; Chen L
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37382572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.