These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37930178)

  • 1. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Lawler BC; Viano AM; Mobley J
    J Acoust Soc Am; 2023 Nov; 154(5):2858-2868. PubMed ID: 37930178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone.
    Viano AM; Ankersen JP; Hoffmeister BK; Huang J; Fairbanks LC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3309-3325. PubMed ID: 34138705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck.
    Hoffmeister BK; Delahunt SI; Downey KL; Viano AM; Thomas DM; Georgiou LA; Gray AJ; Newman WR; Main EN; Pirro G
    Ultrasound Med Biol; 2022 Jun; 48(6):997-1009. PubMed ID: 35282987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Holt AP; Kaste SC
    Phys Med Biol; 2011 Oct; 56(19):6243-55. PubMed ID: 21896966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure.
    Hoffmeister BK; Viano AM; Huang J; Fairbanks LC; Ebron SC; Moore JT; Ankersen JP; Huber MT; Diaz AA
    J Acoust Soc Am; 2018 Jun; 143(6):3642. PubMed ID: 29960442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone.
    Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W
    Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz.
    Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study.
    Hoffmeister BK; Spinolo PL; Sellers ME; Marshall PL; Viano AM; Lee SR
    J Acoust Soc Am; 2015 Oct; 138(4):2449-57. PubMed ID: 26520327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.
    Hoffmeister BK; Mcpherson JA; Smathers MR; Spinolo PL; Sellers ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2115-25. PubMed ID: 26683412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency dependence of apparent ultrasonic backscatter from human cancellous bone.
    Hoffmeister BK
    Phys Med Biol; 2011 Feb; 56(3):667-83. PubMed ID: 21220842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Bone Assessment Using the Backscatter Amplitude Decay Constant.
    Hoffmeister BK; Gray AJ; Sharp PC; Fairbanks LC; Huang J
    Ultrasound Med Biol; 2020 Sep; 46(9):2412-2423. PubMed ID: 32553693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gate choice on backscatter difference measurements of cancellous bone.
    Hoffmeister BK; Viano AM; Fairbanks LC; Ebron SC; McPherson JA; Huber MT
    J Acoust Soc Am; 2017 Aug; 142(2):540. PubMed ID: 28863582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backscatter-difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System.
    Hoffmeister BK; Smathers MR; Miller CJ; McPherson JA; Thurston CR; Spinolo PL; Lee SR
    Ultrason Imaging; 2016 Jul; 38(4):285-97. PubMed ID: 26416839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A backscatter difference technique for ultrasonic bone assessment.
    Hoffmeister BK; Wilson AR; Gilbert MJ; Sellers ME
    J Acoust Soc Am; 2012 Dec; 132(6):4069-76. PubMed ID: 23231136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone.
    Chou X; Xu F; Li Y; Liu C; Ta D; Le LH
    Biomed Res Int; 2018; 2018():4786329. PubMed ID: 29780823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency dependence of the ultrasonic power reflected from the water-tissue interface of human cancellous bone in vitro.
    Hoffmeister BK; Main EN; Newman WR; Ebron SC; Huang J
    J Acoust Soc Am; 2022 Oct; 152(4):2082. PubMed ID: 36319263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.