BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37930294)

  • 21. Genome Editing for the Study of Cardiovascular Diseases.
    Chadwick AC; Musunuru K
    Curr Cardiol Rep; 2017 Mar; 19(3):22. PubMed ID: 28220462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'Old' genome editors might treat mitochondrial diseases.
    Leslie M
    Science; 2018 Sep; 361(6409):1302. PubMed ID: 30262479
    [No Abstract]   [Full Text] [Related]  

  • 23. Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective.
    Jackson CB; Turnbull DM; Minczuk M; Gammage PA
    Trends Mol Med; 2020 Jul; 26(7):698-709. PubMed ID: 32589937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA.
    Cho SI; Lim K; Hong S; Lee J; Kim A; Lim CJ; Ryou S; Lee JM; Mok YG; Chung E; Kim S; Han S; Cho SM; Kim J; Kim EK; Nam KH; Oh Y; Choi M; An TH; Oh KJ; Lee S; Lee H; Kim JS
    Cell; 2024 Jan; 187(1):95-109.e26. PubMed ID: 38181745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation of mitochondrial genes and mtDNA heteroplasmy.
    Bacman SR; Gammage PA; Minczuk M; Moraes CT
    Methods Cell Biol; 2020; 155():441-487. PubMed ID: 32183972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.
    Gammage PA; Viscomi C; Simard ML; Costa ASH; Gaude E; Powell CA; Van Haute L; McCann BJ; Rebelo-Guiomar P; Cerutti R; Zhang L; Rebar EJ; Zeviani M; Frezza C; Stewart JB; Minczuk M
    Nat Med; 2018 Nov; 24(11):1691-1695. PubMed ID: 30250142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome.
    Wang B; Lv X; Wang Y; Wang Z; Liu Q; Lu B; Liu Y; Gu F
    Sci China Life Sci; 2021 Sep; 64(9):1463-1472. PubMed ID: 33420919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches.
    Nissanka N; Moraes CT
    EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
    Mok BY; Kotrys AV; Raguram A; Huang TP; Mootha VK; Liu DR
    Nat Biotechnol; 2022 Sep; 40(9):1378-1387. PubMed ID: 35379961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic editing of hepatocyte genome in vivo.
    Ruiz de Galarreta M; Lujambio A
    J Hepatol; 2017 Oct; 67(4):818-828. PubMed ID: 28527665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 33. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing.
    Mi L; Shi M; Li YX; Xie G; Rao X; Wu D; Cheng A; Niu M; Xu F; Yu Y; Gao N; Wei W; Wang X; Wang Y
    Nat Commun; 2023 Feb; 14(1):874. PubMed ID: 36797253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced C-To-T and A-To-G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED.
    Wei Y; Jin M; Huang S; Yao F; Ren N; Xu K; Li S; Gao P; Zhou Y; Chen Y; Yang H; Li W; Xu C; Zhang M; Wang X
    Adv Sci (Weinh); 2024 Jan; 11(3):e2304113. PubMed ID: 37984866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
    Willis JCW; Silva-Pinheiro P; Widdup L; Minczuk M; Liu DR
    Nat Commun; 2022 Nov; 13(1):7204. PubMed ID: 36418298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
    Tolle I; Tiranti V; Prigione A
    EMBO Rep; 2023 Apr; 24(4):e55678. PubMed ID: 36876467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvements in the genetic editing technologies: CRISPR-Cas and beyond.
    Mingarro G; Del Olmo ML
    Gene; 2023 Feb; 852():147064. PubMed ID: 36435506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Research advance and application in the gene therapy of gene editing technologies].
    Ren YX; Xiao RD; Lou XM; Fang XD
    Yi Chuan; 2019 Jan; 41(1):18-27. PubMed ID: 30686782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Gene Editing Approaches to Fine-Tune the Immune System.
    Pavlovic K; Tristán-Manzano M; Maldonado-Pérez N; Cortijo-Gutierrez M; Sánchez-Hernández S; Justicia-Lirio P; Carmona MD; Herrera C; Martin F; Benabdellah K
    Front Immunol; 2020; 11():570672. PubMed ID: 33117361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial Genome Editing to Treat Human Osteoarthritis-A Narrative Review.
    Zhong G; Madry H; Cucchiarini M
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.