These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 37930432)

  • 1. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries.
    Qin M; Zeng Z; Cheng S; Xie J
    Acc Chem Res; 2024 Apr; 57(8):1163-1173. PubMed ID: 38556989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.
    Yang C; Suo L; Borodin O; Wang F; Sun W; Gao T; Fan X; Hou S; Ma Z; Amine K; Xu K; Wang C
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6197-6202. PubMed ID: 28566497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries.
    Badi N; Theodore AM; Alghamdi SA; Al-Aoh HA; Lakhouit A; Singh PK; Norrrahim MNF; Nath G
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing electrolytes and interphases for high-energy lithium batteries.
    Wan H; Xu J; Wang C
    Nat Rev Chem; 2024 Jan; 8(1):30-44. PubMed ID: 38097662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries.
    Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J
    Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research development on electrolytes for magnesium-ion batteries.
    Man Y; Jaumaux P; Xu Y; Fei Y; Mo X; Wang G; Zhou X
    Sci Bull (Beijing); 2023 Aug; 68(16):1819-1842. PubMed ID: 37516661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Nonflammable Organic Electrolyte Promises Safer Li-Metal Batteries: From Solvation Structure Perspectives.
    Yuan S; Ding K; Zeng X; Bin D; Zhang Y; Dong P; Wang Y
    Adv Mater; 2023 Mar; 35(13):e2206228. PubMed ID: 36004772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review.
    Chattopadhyay J; Pathak TS; Santos DMF
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular crowding electrolytes for high-voltage aqueous batteries.
    Xie J; Liang Z; Lu YC
    Nat Mater; 2020 Sep; 19(9):1006-1011. PubMed ID: 32313263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells.
    Adil M; Ghosh A; Mitra S
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-voltage liquid electrolytes for Li batteries: progress and perspectives.
    Fan X; Wang C
    Chem Soc Rev; 2021 Sep; 50(18):10486-10566. PubMed ID: 34341815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research progress of organic liquid electrolyte for sodium ion battery.
    Zhang J; Li J; Wang H; Wang M
    Front Chem; 2023; 11():1253959. PubMed ID: 37780988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy.
    Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W
    Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.