These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37930636)

  • 1. Handling missing data in partially clustered randomized controlled trials.
    Yang M; Gaskin DJ
    Psychol Methods; 2023 Nov; ():. PubMed ID: 37930636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model.
    Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ
    Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substantive model compatible multilevel multiple imputation: A joint modeling approach.
    Quartagno M; Carpenter JR
    Stat Med; 2022 Nov; 41(25):5000-5015. PubMed ID: 35959539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias.
    Curnow E; Tilling K; Heron JE; Cornish RP; Carpenter JR
    Front Epidemiol; 2023 Sep; 3():1237447. PubMed ID: 37974561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation approaches for handling incomplete three-level data with time-varying cluster-memberships.
    Wijesuriya R; Moreno-Betancur M; Carlin J; De Silva AP; Lee KJ
    Stat Med; 2022 Sep; 41(22):4385-4402. PubMed ID: 35893317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach.
    Grund S; Lüdtke O; Robitzsch A
    Behav Res Methods; 2021 Dec; 53(6):2631-2649. PubMed ID: 34027594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple imputation methods for missing multilevel ordinal outcomes.
    Dong M; Mitani A
    BMC Med Res Methodol; 2023 May; 23(1):112. PubMed ID: 37161419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression models involving nonlinear effects with missing data: A sequential modeling approach using Bayesian estimation.
    Lüdtke O; Robitzsch A; West SG
    Psychol Methods; 2020 Apr; 25(2):157-181. PubMed ID: 31478719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of approaches for multiple imputation of three-level data.
    Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of approaches for accommodating interactions and non-linear terms in multiple imputation of incomplete three-level data.
    Wijesuriya R; Moreno-Betancur M; Carlin JB; De Silva AP; Lee KJ
    Biom J; 2022 Dec; 64(8):1404-1425. PubMed ID: 34914127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials.
    Gomes M; Díaz-Ordaz K; Grieve R; Kenward MG
    Med Decis Making; 2013 Nov; 33(8):1051-63. PubMed ID: 23913915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imputation strategies for missing binary outcomes in cluster randomized trials.
    Ma J; Akhtar-Danesh N; Dolovich L; Thabane L;
    BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares.
    Grund S; Lüdtke O; Robitzsch A
    Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable.
    Grobler AC; Lee K
    Biom J; 2020 Mar; 62(2):467-478. PubMed ID: 31304611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study.
    Candlish J; Teare MD; Dimairo M; Flight L; Mandefield L; Walters SJ
    BMC Med Res Methodol; 2018 Oct; 18(1):105. PubMed ID: 30314463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple imputation for discrete data: Evaluation of the joint latent normal model.
    Quartagno M; Carpenter JR
    Biom J; 2019 Jul; 61(4):1003-1019. PubMed ID: 30868652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables.
    Cao Y; Allore H; Vander Wyk B; Gutman R
    Stat Med; 2022 Dec; 41(30):5844-5876. PubMed ID: 36220138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data.
    Sullivan TR; Salter AB; Ryan P; Lee KJ
    Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.