These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37930636)

  • 21. Local average treatment effects estimation via substantive model compatible multiple imputation.
    DiazOrdaz K; Carpenter J
    Biom J; 2019 Nov; 61(6):1526-1540. PubMed ID: 31456263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple imputation of missing data in nested case-control and case-cohort studies.
    Keogh RH; Seaman SR; Bartlett JW; Wood AM
    Biometrics; 2018 Dec; 74(4):1438-1449. PubMed ID: 29870056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of the use of controlled multiple imputation in randomised controlled trials with missing outcome data.
    Tan PT; Cro S; Van Vogt E; Szigeti M; Cornelius VR
    BMC Med Res Methodol; 2021 Apr; 21(1):72. PubMed ID: 33858355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Handling missing data in a composite outcome with partially observed components: simulation study based on clustered paediatric routine data.
    Gachau S; Njagi EN; Owuor N; Mwaniki P; Quartagno M; Sarguta R; English M; Ayieko P
    J Appl Stat; 2022; 49(9):2389-2402. PubMed ID: 35755090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of strategies for selecting auxiliary variables for multiple imputation.
    Mainzer RM; Nguyen CD; Carlin JB; Moreno-Betancur M; White IR; Lee KJ
    Biom J; 2024 Jan; 66(1):e2200291. PubMed ID: 38285405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Missing data strategies for time-varying confounders in comparative effectiveness studies of non-missing time-varying exposures and right-censored outcomes.
    Desai M; Montez-Rath ME; Kapphahn K; Joyce VR; Mathur MB; Garcia A; Purington N; Owens DK
    Stat Med; 2019 Jul; 38(17):3204-3220. PubMed ID: 31099433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations.
    Jolani S
    Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response Surface Analysis with Missing Data.
    Humberg S; Grund S
    Multivariate Behav Res; 2022; 57(4):581-602. PubMed ID: 33739898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of methods for analyzing a binary composite endpoint with partially observed components in randomized controlled trials.
    Pham TM; White IR; Kahan BC; Morris TP; Stanworth SJ; Forbes G
    Stat Med; 2021 Dec; 40(29):6634-6650. PubMed ID: 34590333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correction of bias from non-random missing longitudinal data using auxiliary information.
    Wang C; Hall CB
    Stat Med; 2010 Mar; 29(6):671-9. PubMed ID: 20029935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple imputation methods for bivariate outcomes in cluster randomised trials.
    DiazOrdaz K; Kenward MG; Gomes M; Grieve R
    Stat Med; 2016 Sep; 35(20):3482-96. PubMed ID: 26990655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.
    Floden L; Bell ML
    BMC Med Res Methodol; 2019 Jul; 19(1):161. PubMed ID: 31345166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables.
    Young-Saver DF; Gornbein J; Starkman S; Saver JL
    J Stroke Cerebrovasc Dis; 2018 Dec; 27(12):3662-3669. PubMed ID: 30297167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model-based imputation procedure for multilevel regression models with random coefficients, interaction effects, and nonlinear terms.
    Enders CK; Du H; Keller BT
    Psychol Methods; 2020 Feb; 25(1):88-112. PubMed ID: 31259566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study.
    Ma J; Raina P; Beyene J; Thabane L
    BMC Med Res Methodol; 2013 Jan; 13():9. PubMed ID: 23343209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework.
    Voillet V; Besse P; Liaubet L; San Cristobal M; González I
    BMC Bioinformatics; 2016 Oct; 17(1):402. PubMed ID: 27716030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings.
    Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A
    J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partially clustered designs for clinical trials: Unifying existing designs using consistent terminology.
    Lange KM; Kasza J; Sullivan TR; Yelland LN
    Clin Trials; 2023 Apr; 20(2):99-110. PubMed ID: 36628406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model.
    Antunes L; Mendonça D; Bento MJ; Njagi EN; Belot A; Rachet B
    Stat Methods Med Res; 2021 Oct; 30(10):2256-2268. PubMed ID: 34473604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.