These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37930876)
1. Electric Field Enhanced Ammoxidation of Aldehydes Using Supported Fe Clusters Under Ambient Oxygen Pressure. Wang C; Li J; Shao T; Zhang D; Mai Y; Li Y; Besenbacher F; Niemantsverdriet H; Rosei F; Zhong J; Su R Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202313313. PubMed ID: 37930876 [TBL] [Abstract][Full Text] [Related]
2. Fe-based N-doped dendritic catalysts for catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. Zhao H; Sun X; Xu D; Zhu Q; Zhu Y; Dong Z J Colloid Interface Sci; 2020 Apr; 565():177-185. PubMed ID: 31958657 [TBL] [Abstract][Full Text] [Related]
3. High Nitrile Yields of Aerobic Ammoxidation of Alcohols Achieved by Generating Xian C; He J; He Y; Nie J; Yuan Z; Sun J; Martens WN; Qin J; Zhu HY; Zhang Z J Am Chem Soc; 2022 Dec; 144(51):23321-23331. PubMed ID: 36516341 [TBL] [Abstract][Full Text] [Related]
4. Manganese Carbodiimide (MnNCN): A New Heterogeneous Mn Catalyst for the Selective Synthesis of Nitriles from Alcohols. Liu X; Han B; Wu C; Zhou P; Jia M; Zhu L; Zhang Z Angew Chem Int Ed Engl; 2024 Sep; ():e202413799. PubMed ID: 39283173 [TBL] [Abstract][Full Text] [Related]
5. Vanadium-catalyzed Oxidative Conversion of Primary Aromatic Alcohols into Amides and Nitriles with Molecular Oxygen. Zhao Y; Du Z; Guo B; Shen X; Li S; Wang T; Liang C Chem Asian J; 2022 Jun; 17(11):e202200224. PubMed ID: 35338755 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Vilím J; Knaus T; Mutti FG Angew Chem Int Ed Engl; 2018 Oct; 57(43):14240-14244. PubMed ID: 30176101 [TBL] [Abstract][Full Text] [Related]
7. Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Sun K; Shan H; Neumann H; Lu GP; Beller M Nat Commun; 2022 Apr; 13(1):1848. PubMed ID: 35387970 [TBL] [Abstract][Full Text] [Related]
8. Efficient reverse water gas shift reaction at low temperatures over an iron supported catalyst under an electric field. Yamaoka M; Tomozawa K; Sumiyoshi K; Ueda T; Ogo S Sci Rep; 2024 May; 14(1):10216. PubMed ID: 38702478 [TBL] [Abstract][Full Text] [Related]
9. Agglomeration Suppression of a Fe-Supported Catalyst and its Utilization for Low-Temperature Ammonia Synthesis in an Electric Field. Sakai R; Murakami K; Mizutani Y; Tanaka Y; Hayashi S; Ishikawa A; Higo T; Ogo S; Tsuneki H; Nakai H; Sekine Y ACS Omega; 2020 Mar; 5(12):6846-6851. PubMed ID: 32258920 [TBL] [Abstract][Full Text] [Related]
10. Oxidative cleavage and ammoxidation of organosulfur compounds via synergistic Co-Nx sites and Co nanoparticles catalysis. Luo H; Tian S; Liang H; Wang H; Gao S; Dai W Nat Commun; 2023 May; 14(1):2981. PubMed ID: 37221164 [TBL] [Abstract][Full Text] [Related]
11. Natural halloysite nanotubes as an efficient catalyst in strecker reaction: the synthesis of α-amino nitriles under solvent-free conditions. Mousavi-Mashhadi SA; Shiri A Mol Divers; 2023 Apr; 27(2):919-929. PubMed ID: 35799077 [TBL] [Abstract][Full Text] [Related]
12. Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier. Ventura-Espinosa D; Marzá-Beltrán A; Mata JA Chemistry; 2016 Dec; 22(49):17758-17766. PubMed ID: 27862376 [TBL] [Abstract][Full Text] [Related]
13. Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant. Dornan LM; Cao Q; Flanagan JC; Crawford JJ; Cook MJ; Muldoon MJ Chem Commun (Camb); 2013 Jul; 49(54):6030-2. PubMed ID: 23719631 [TBL] [Abstract][Full Text] [Related]
14. Ethane Ammoxidation over Sn/H-Zeolite Catalysts: Toward the Factors Contributing to the Yield of Acetonitrile. Liu Y; Li T; Qiao S; Heng Z; Zhao T; Wu H; Xiong T; Li J; Yao X; Long L; Xiang Y; Liu Q; Lu L; Liang T; Chen J; Jin F ACS Appl Mater Interfaces; 2023 May; 15(21):25604-25614. PubMed ID: 37192272 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets. Hua M; Song J; Huang X; Liu H; Fan H; Wang W; He Z; Liu Z; Han B Angew Chem Int Ed Engl; 2021 Sep; 60(39):21479-21485. PubMed ID: 34318968 [TBL] [Abstract][Full Text] [Related]
16. Facile one pot synthesis of 2-substituted benzimidazole derivatives under mild conditions by using engineered MgO@DFNS as heterogeneous catalyst. Kusuma S; Bawiskar DB; Singh C; Panneerselvam P; Sinha P; Samal AK; Jadhav AH RSC Adv; 2023 Oct; 13(46):32110-32125. PubMed ID: 37920763 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe Nasrollahzadeh M; Atarod M; Sajadi SM J Colloid Interface Sci; 2017 Jan; 486():153-162. PubMed ID: 27697653 [TBL] [Abstract][Full Text] [Related]
18. Cyanation of aryl bromides with K4[Fe(CN)6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes. Gerber R; Oberholzer M; Frech CM Chemistry; 2012 Mar; 18(10):2978-86. PubMed ID: 22298440 [TBL] [Abstract][Full Text] [Related]
19. Selective Synthesis of Symmetrical Secondary Amines from Nitriles with a Pt-CuFe/Fe Guo R; He G; Liu L; Ai Y; Hu ZN; Zhang X; Tian H; Sun HB; Niu D; Liang Q Chempluschem; 2020 Aug; 85(8):1783-1788. PubMed ID: 32808467 [TBL] [Abstract][Full Text] [Related]
20. Self-supported chiral titanium cluster (SCTC) as a robust catalyst for the asymmetric cyanation of imines under batch and continuous flow at room temperature. Seayad AM; Ramalingam B; Chai CL; Li C; Garland MV; Yoshinaga K Chemistry; 2012 Apr; 18(18):5693-700. PubMed ID: 22438070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]